Foundations of Physics manuscript No.
(will be inserted by the editor)

Carl Brannen

Density Matrices and the Weak
Quantum Numbers

Received: 11/05/2008 / Accepted: date

Abstract Pure density matrices are idempotent, Hermitian, and have trace
1. The idempotency equation for an N x N matrix gives N? quadratic equa-
tions in N2 unknowns. We consider a subalgebra of the 6 x 6 complex matrices
defined by the permutation group on three elements. We show that the Her-
mitian, idempotent members of this subalgebra have quantum numbers that
exactly match the weak hypercharge and weak isospin quantum numbers of
the left and right handed elementary fermions.

The use of the permutation group on 3 elements suggests that the ele-
mentary fermions are composite, or satisfy the Tripled Pauli statistics found
by Lubos Motl, instead of the expected Fermi-Dirac statistics.
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1 Introduction

Pure density matrices p satisfy the idempotency equation p? = p. An idem-
potency relation defines a set of coupled quadratic equations. For example,
the spin-1/2 density matrix corresponding to spin in the @ direction is given
by p, = (1 + 4 - 0)/2 where o is the vector of Pauli spin operators. Written
out using the Pauli spin matrices, this gives:

114z -6y (a1 a2
p“_2<aﬁ+iy 1—z>_<a21a22 ‘ 1)

Carl Brannen

720 Road N NE,

Moses Lake, WA 98837 USA
E-mail: carl@brannenworks.com



From the idempotency equation p2 = p,,, we get a set of 4 coupled quadratic
equations in the 4 unknowns a;;, as follows:

a11 = a11611 + A12621
Q12 = a11012 + G12022 2)
Q21 = 21011 + A22021
Q22 = Q21012 + A22022.

Four linear equations in four unknowns would have either no solution, a single
unique solution, or an infinite number of solutions. For the case of coupled
quadratic equations, more complicated solution sets are possible. Solving this
set of equations gives us hints in how to obtain physically relevant solutions
from the general solutions of an idempotency relation.

Two easy solutions to Eq. (2) are the 0 and 1 matrices:

(50)- (o1)- ®

These matrices are not pure density matrices because their traces are not
equal to 1. However, we can interpret them as the density matrices repre-
senting the state with no particles and the state with two particles of opposite
spin. Then the trace can be thought of as giving a count of the number of
particles represented.

The remaining solutions to Eq. (2) have trace 1. Pure density matrices
must be Hermitian but these remaining solutions also include non Hermitian
matrices. We can parameterize all the trace 1 solutions (both Hermitian and
non Hermitian), by choosing two unit vectors & and ¢ with & 4+ ¥ # 0. Then
any of the remaining solutions (i.e. idempotent 2 x 2 matrices with trace 1)
can be written uniquely as

200 po/(1+11-0) = (1+a-0) 1+ 0)/(2+20-0). (4)

This is a real multiple of the product of two (Hermitian) pure density matri-
ces. The Hermitian solutions have @ = o.

The first generation left and right handed elementary fermions, and their
antiparticles, have the following weak hypercharge (¢y) and weak isospin (3)
quantum numbers, particles on the left and anti-particles on the right:

to t3 to t3
vl =1 +1/2  og| +1 —1/2
vr| O 0 vl 0 0

dr|+1/3 —=1/2  dgr|-1/3 +1/2
dr|-2/3 0 dr|+2/3 0 (5)
er| =1 —1/2 eg| +1 +1/2

er| —2 0 er| +2 0

ur|[+1/3 +1/2  agr|-1/3 —1/2

ur|+4/3 0 ur|—4/3 0

The quantum numbers of the other generations are the same. Note that each
pair of quantum numbers appears twice, once for a particle and once again,
negated, for an anti-particle.



Our equations will provide the quantum numbers for the fermions with
weak hypercharge non negative; some of these are particles while others are
anti-particles. In general, if one obtains the quantum numbers of the particles
with positive weak hypercharge by solving the idempotency equation p? = p,
then a set of equations that will give the negative weak hypercharge quantum
numbers is simply p? = —p.

The requirement that a pure density matrix satisfy the equation p? = +p
arises from the assumption that the elementary particles can be represented
by a state vector, and that the state vector can always be normalized. While
state vectors are fully adequate for the usual formulation of quantum me-
chanics, they are somewhat clunky when modeling non Hermitian states. In
a following paper we will use these concepts to model the generation structure
of the elementary fermions.

While our interest is in the permutation group on 3 elements, we will first
discuss the considerably simpler case of the permutation group on 2 elements.

2 Permutations of 2 elements

We will write the group with two elements as {R, G}, and the permutation
group on them as {I,S}. The action of the permutation group on the two
elements is defined as follows:

RG
TIRG (6)
S|G R

so I is the identity and S swaps the two elements. The identity [ is the trivial
symmetry and can be thought of as representing the U(1) symmetry. The
Pauli spin matrix o, squares to 1. This is analogous to the fact that 5% = I,
so we will think of S as representing weak isospin SU(2).

We can write the identity I in two ways as a product of two group ele-
ments: I = II, and I = SS. To convert this into a quadratic equation, we
write T = I? + S? with I and S now thought of as complex numbers. In
terms of quantum mechanics, we can think of this as writing the transition
amplitude I as the sum of two processes, the first with the particle under-
taking two transitions each with amplitudes I, the second with the particle
undertaking two transitions with amplitude S.

Similarly, we can write S in two ways as S = IS, and S = SI. This gives
the quadratic equation S = 2IS. Our complete set of coupled quadratic
equations is:

I=1%+5%
S = 2IS. (7)



There are four solutions to these two coupled quadratic equations. They
correspond to the quantum numbers of the leptons as follows:

If we were to replace the usual weak hypercharge ty with its contribution to
electric charge, to/2, the correspondence is exact; the solutions to the coupled
quadratic equations defined by the permutation group on two elements gives
the ¢p/2 and t3 quantum numbers of the leptons.

3 Permutations of 3 elements

For the permutation group on 3 elements, we will use the elements {R, G, B}
and the group elements {I, J, K, R, G, B} with their action defined as:

RG B
RGB
G BR
BRG (9)
R BG
BGR
GRB

WA RS

The permutation group is then

(10)
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Converting this permutation group into quadratic equations as in the previ-
ous section, we obtain:

I=I’+JK+KJ+R>+G?+ B?,
J=1J+JI+K?+RG+GB+ BR,
K=IK+J>+KI+ RB+GR+ BG, (1)
R=IR+JG+ KB+ RI+GK + B/J,
G=IG+JB+ KR+ RJ+GI + BK,
B=IB+JR+KG+ RK +GJ + BI.

As with the idempotency problem for 2 x 2 matrices, there will be discrete
solutions as well as continuous solutions.



For the case of the permutation group on 2 elements, we used I = ty/2
and we will retain this assignment. The three elements R, G, and B are all
equivalent to the S of the permutation group on 2 elements. We will assign
R+G+ B=ts.

As a first step in solving these equations, we rewrite them as an equivalent
set of six equations:

I=1?+2JK + (R* + G* + B?),
(R+G+B2=(I+J+K)(1—-(I-J-K)),
0=(J—K)1+J+K —2I),
(1-3I+(I+J+K))R=(R+G+B)(J+K),
(1-3I+ (I +J+K))G=(R+G+ B)(J+K),
(1-3[+(I+J+K))B=(R+G+B)(J+K).

Choosing I = 1/2 and J = —K solves the last four of these equations. The
two remaining equations reduce to:

1/2=+(R+ G + B),
J?=-1/8+ (R?*+ G* + B%)/2.

Since we have solved four equations with only two assignments, the solution
space will be at least a 2-manifold. We will parameterize the solutions with
complex numbers «, and (3. Eventually we find that we can write four 2-
manifolds of solutions:

(12)

(13)

I J K R G B
1/2 +v —y +1/6+a +1/6+3 +1/6—a—0
1/2 —y +y +1/6+a +1/6+5 +1/6—a—7, (14)

1/2 +y —y -1/6+a -1/6+5 —-1/6—a—0
1/2 —y +y —-1/6+a —-1/6+5 —1/6—a—p

where v = /a2 + 32 + a8 — 1/12. The above solutions share ty = 2I = +1,
and have t3 = R+ G + B = £1/2. These are the weak quantum numbers of
the Ur and ég.

Eliminating the case “I = 1/2 and J = —K”, there are 10 discrete
solutions. Six of these show up as two triplets:
I J K R GB
/3 w™/3  w™/3 0 0 0 (15)

2/3 —wt/3 —w /3 0 0 0

where w = exp(2i7/3) and n = 0,1, 2. All six of these solutions have weak
isospin zero. The two triplets differ in weak hypercharge with to = 2I = 4+2/3
and tg = 2I = 4+4/3. These are the weak quantum numbers of the dg and
UR.

The remaining four discrete solutions have different combinations of weak
hypercharge and weak isospin:

I J K R G B
0 0 0 0 0 0
1 0 0 0 0 0 (16)
1/6 1/6 1/6 —1/6 —1/6 —1/6
1/6 1/6 1/6 +1/6 +1/6 +1/6




The first two of these solutions have weak isospin 0 and weak hypercharge 0
and 2. These are the quantum numbers of the vg (or 7y) and the ér. The
last two solutions share weak hypercharge 1/3 and have weak isospin +1/2;
these are the quantum numbers of the dy, and uy,.

The complete set of solutions to the 6 coupled quadratic equations, and
their assignment to the first generation fermions are as follows:

I J K R G B
v /vr| 0 0 0 0 0 0
dr, |1/6  1/6 1/6 ~1/6 ~1/6 —~1/6
up |1/6  1/6 1/6 +1/6 +1/6 +1/6
dr |1/3 w*"/3 w™/3 0 0 0 (17)

vp |1/2 Ly ¥y -1/64+a -1/64+8 -1/6—a—p
er | 1/2  +v Fy +1/6+a +1/64+408 +1/6—a—p
ur |2/3 —wt™/3 —w"/3 0 0 0
e, | 1 0 0 0 0 0

where w and v are as above.

This result is lacking in that we have three different choices each for dy,
and ug, and an infinite number for 7 and eg. We can think of these extra
solutions as being in analogy with the non Hermitian solutions to the 2 x 2
matrix idempotency problem Eq. (2). To get rid of them, we need to define
“Hermiticity” for the solutions.

4 Hermiticity
Since the six quadratic equations are generated from the permtuation group

on three elements, we begin with matrices that represent that group. For the
even permutations, we have:

100 010 001
I=(o010])s=(001|K=[100 (18)
001 100 010

No two of these three matrices is non zero in the same position. Consequently,
we can multiply each by its corresponding complex number I, J, and K and
then assemble the resulting three matrices them into a single complex matrix
Poi
1 JK
Ph=|\KIJ]|. (19)
JK I

This is a 1-circulant matrix. That is, each row is the same as the previous
row rotated one position to the right. Similarly, we can assemble the odd
permutations into a matrix P;:

RBG
P,=|BGR]|, (20)
G RB



a 2-circulant matrix.

The 1-circulant 3 x 3 matrices form a subalgebra of the 3 x 3 matrices;
the product or sum of any two such matrices is a matrix of the same sort.
Products of two 2-circulant matrices are a 1-circulant, and the product of
a l-circulant and a 2-circulant is 2-circulant. These are the same rules that
apply to the diagonal (1-circulant) and off-diagonal (2-circulant) elements of
a 2 x 2 matrix. Consequently, we can assemble P and P into a 6 X 6 matrix:

(21)

The six coupled equations Eq. (11) are defined by P? = P.

Matrices of this form are a subalgebra of the 6 x 6 complex matrices.
That is, they include 0 and 1, and are closed under negation, addition and
multiplication. They can be thought of as defining a form of multiplication
that operates between two 6-element complex vectors.

These 6 x 6 matrices give a natural definition of “Hermiticity” to the
solutions to the 6 coupled quadratic equations of Eq. (11). We will say that
a solution is Hermitian if the related 6 x 6 matrix is Hermitian. Examining
Eq. (21), we find Hermiticity requires that I, R, G, and B must be real and
that J and K must be complex conjugates of each other.

Applying this definition of Hermiticity to the 8 classes of solutions given
in Eq. (17), we find that each elementary fermion is represented by a unique
Hermitian solution. The assignments of the elementary particles,

I J K R G B
v /vr| 0 0 0 0 0 0
dr |1/6  1/6 1/6  —1/6 —1/6 —1/6
ur, |1/6  1/6 1/6  +1/6 +1/6 +1/6
dr |1/3  1/3 1/3 0 0 0 (22)
vr |1/2 +iV3/6 FiV3/6 —1/6 —1/6 —1/6
er | 1/2 +iV3/6 FiV/3/6 +1/6 +1/6 +1/6
ur |2/3 —1/3  —1/3 0 0 0
er | 1 0 0 0 0 0

are unique up to the choice of the sign of the imaginary unit.

Thus the requirement of Hermiticity has decreased the solution set to
the idempotency problem down to just the quantum numbers of the left and
right handed elementary fermions. This is in analogy to how the pure density
matrices of the Pauli algebra are defined in terms of the idempotent 2 x 2
matrices. The only difference is that the pure density matrices of the Pauli
algebra also satisfy the restriction that their trace is 1.

This lack of a requirement on the trace suggests that if we are to think
of the left and right handed elementary fermions as being defined by (gen-
eralized) pure density matrices we cannot assume that they are the density



matrices of single quantum states. Instead, they would have to be composite.
The traces of the Hermitian solutions are given by 6/ and are integers from 0
to 6. With the interpretation of the trace as giving the number of preons in a
generalized pure density matrix minus the number of anti-preons, we expect
that the left and right handed elementary fermions will be composite with 6
preons / anti-preons.

5 The Fermion Cube

Plotting the weak hypercharge and weak isospin quantum numbers of the
elementary fermions, we find that they appear as a tilted cube. The leptons
are found on the corners of the cube while the quarks appear along four edges
of the cube. See Fig. (1), the “Fermion cube.”

to

t3

Fig. 1 Weak hypercharge, to, and weak isospin, t3, quantum numbers plotted for
the first generation standard model quantum states. Leptons are hollow circles and
quarks (x3) are filled circles. Electric charge, ), and neutral charge, Q' also shown.

Unlike the leptons, quarks carry color charge. This is not graphed in
Fig. (1) and so each quark (filled) dot has multiplicity 3. This pattern, two
lepton singletons (one a neutrino, the other a charged lepton) surrounding
two quark triplets (one up, the other down), is suggestive of a substructure
where the quarks and leptons are composed of 3 preons each. The idea is
that the leptons are composed of three, more or less identical, preons with
the preon type distinguishing between the leptons. The quarks are composed
of mixtures.

This author proposed such a preon model in an unpublished paper[1] that
used the idempotent structure of Clifford algebras to count the number of
hidden dimensions required to produce the left and right handed elementary
fermions. At that time the author believed this preon model was an original
idea, but the idea is called a “resurrected preon model”[2] by Gerald Rosen
in an article referencing the author’s rewrite[3, 4] of Yoshio Koide’s charged
lepton mass equation[5, 6].



Presumably the reason this preon model required resurrection is that it
is difficult to see how to assemble three identical preons into a fermion with
spin-1/2. One possible solutions is a modification of the statistics obeyed by
quantum particles.

6 Tripled Pauli Statistics

It has long been known (Price’s theorem[7]) that black holes exponentially
approach a condition where the only numbers that characterize them are
their mass, spin, and their electric charge. According to the laws of quantum
mechanics, this exponential decay will be accomplished through Hawking
radiation[8], the emission of quantum objects. One can make a slight leap of
faith and suppose that knowing more about this classical exponential decay
will give us information about the quantum particles that are emitted.

This observation motivates[9] an examination of the quasinormal modes
of vibration of black holes, that is, the modes that can be characterized as
following an exp(—at) sin(wt) law. If the decay is due to the emission of only
a single type of quantum particle, the sine function defines a frequency w,
that is natural to associate with the energy of the emitted particles. The
exponential function gives the rate at which these particles are emitted. The
spectrum of w is a fundamental characteristic of a black hole.

The correspondence between the classical frequency w, and the quantum
particles making up the Hawking radiation is an example of Bohr’s corre-
spondence principle; classical mechanics should be obtained for very large
quantum numbers. In this case, quantum transition frequencies should be
equal to classical oscillation frequencies. Therefore the frequencies of the
quasinormal modes can be thought of as transition frequencies.

To obtain the quasinormal modes of vibration, one solves an equation that
is something like Schroedinger’s wave equation. The energy will be complex
with the imaginary part giving the exponential decay. Of interest are the
modes where this decay is as rapid as possible, the “asymptotic” modes.

A consequence of Hawking radiation is that black holes have a tempera-
ture. Hawking showed that this temperature is proportional to the area. With
quantum mechanics, classical concepts of thermodynamics like temperature
are a consequence of statistical mechanics. And in statistical mechanics, one
makes the assumption that quantum particles have either Fermi-Dirac or
Bose-Einstein statistics. These are slightly different from the Maxwell statis-
tics that classical (distinguishable) systems use.

In 2002, Lubos Motl analytically solved the asymptotic quasinormal mode
problem for all spin cases and computed their quantum frequencies v.[9] The
quantum mechanical problem of the quasinormal modes is similar to one of
scattering amplitudes for a quantum particle approaching a scattering body.
In this case the scattering body is the black hole; the particles either escape
to infinity or are absorbed by the black hole.

Lubos noticed that the transmission amplitude T'(w), that is, the proba-
bilities of particles escaping to infinity, is similar in form to those of statistical
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mechanics. For the spin-1 modes of vibration, Lubos obtained

T1 (w) ~ !

o T (23)

where By = 87G n M, is the inverse of the Hawking temperature. This is pro-
portional to the occupation numbers for quantum objects with Bose-Einstein
statistics. Similarly, for the spin-1/2 modes, Lubos obtained

1
Tl/z(w) ~ m, (24)
proportional to the occupation numbers for Fermi-Dirac statistics. These two
formulas are what would be expected for bosons with spin-1 and fermions
with spin-1/2.
However, the cases of spin-0 and spin-2 did not give the expected Bose-
Einstein result. The sign obtained was the “4” of Fermi-Dirac statistics in-
stead of the “—” of Bose Einstein, and instead of the “1” appropriate to any

reasonable particle, there was a “3”:

1

T()(u}) ~ Tg(w) ~ m

(25)
Lubos named the statistics appropriate for this type of occupation number
“Tripled Pauli statistics” and noted that “(s)uch an occupation number can
be derived for objects that satisfy the Pauli’s principle, but if such an object
does appear (only one of them can be present in a given state), it can appear
in three different forms.”

There have been no elementary particles observed with spin 0 or 2. The
Higgs (spin 0) and the graviton (spin 2) are expected to have these quantum
numbers. The Higgs is expected to be related to the origin of mass while
the graviton is to carry the gravitational field. If the graviton is to take off
the non spherical portions of the gravitational field of the black hole, these
quasinormal modes of vibration are of particular interest, and they are also
of interest in understanding the nature of mass.

Suppose that a particle was neither a fermion nor a boson, but satisfied
Tripled Pauli statistics. In describing such a particle, we would have to include
three possible forms for it. Following the convention in this paper, we will
call these forms R, G, and B. Thus Tripled Pauli statistics could result in
a density matrix form where the underlying group is the permutation group
on 3 elements even though the particle is a point particle.

7 Conclusion

The left and right handed elementary fermions have weak quantum numbers
that correspond to the Hermitian solutions to the 6 x 6 matrix idempotency
equation for a subalgebra of the matrices that is defined by the permutation
group on 3 elements. A natural conclusion is that the elementary fermions
are composite particles, possibly with internal components obeying Tripled
Pauli statistics.
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