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Preface

The chance is high that the truth lies in the fashionable direction.
But, on the off-chance that it is in another direction—a direction
obvious from an unfashionable view of field theory–who will find
it? Only someone who has sacrificed himself by teaching himself
quantum electrodynamics from a peculiar and unfashionable point
of view; one that he may have to invent for himself.

Richard Feynman,
Stockholm, Sweden,
December 11, 1965

As I write this in October 2006 particle physics is in trouble. Two books
stand out on the physics best sellers list: Lee Smolin’s The Trouble With

Physics, and Peter Woit’s Not Even Wrong. These books show that mankind’s
centuries long effort to understand the nature of the world has come to a
quarter century long pause. The methods that worked between 1925 and 1980
have not succeeded in pushing back the frontier since then. This book defines
an alternative path, a path that may once again allow nature’s mysteries to
unfold to us.

Lee Smolin writes, “When the ancients declared the circle the most perfect
shape, they meant that it was the most symmetric: Each point on the orbit
is the same as any other. The principles that are the hardest to give up are
those that appeal to our need for symmetry and elevate an observed symmetry
to a necessity. Modern physics is based on a collection of symmetries, which
are believed to enshrine the most basic principles.” In this book we will reject
symmetries as the most basic principle and instead look to geometry, more
specifically, the geometric algebra[1] of David Hestenes. But instead of applying
geometric algebra (a type of Clifford algebra) to spinors, we will be applying
it to density operator states.

The geometric algebra is elegant and attractive and several authors have
applied it to the internal symmetries of the elementary particles. [2] This
book has the advantage over previous efforts in that it derives the relationship
between the quarks and leptons, the structure of the generations, and provides
exact formulas for the lepton masses. On the other hand, this book suffers
from the disadvantage of requiring a hidden dimension and that the geometric

xiii



xiv PREFACE

algebra be complex. We will attempt to justify these extensions; in short, they
are required because the usual spacetime algebra is insufficiently complicated
to support the observed standard model particles.

This book is intended as a textbook for graduate students and working
physicists who wish to understand the density operator foundation for quantum
mechanics. The density operator formalism is presented as an alternative to
the usual Hilbert space, or state vector, formalism. In the usual quantum
mechanics textbooks, density operators (or density matrices) are derived from
spinors. We reverse this, and derive spinors from the density operators. Thus
density operators are at least equal to spinors as candidate foundations for
quantum mechanics. But we intend on showing more; that the density operator
formalism is vastly superior.

In the state vector formalism, one obtains a density operator by multiplying
a ket by a bra: ρ = |A〉〈A|. Thus a function that is linear in spinors becomes
bilinear in density operators. And a function that is linear in density operators
becomes non linear when translated into spinor language. This means that
some problems that are simple in one of these formalisms will become nonlinear
problems, difficult to solve, in the other. To take advantage of both these sorts
of problem solving, we must have tools to move back and forth between density
operator and state vector form. While most quantum textbooks provide no
method of obtaining spinors from density operators, we will, and we will show
how to use these methods.

The standard model of the elementary particles has been very good at
predicting the results of particle experiments but it has such a large number of
arbitrary constants that it has long been expected that it would be eventually
replaced with a deeper theory. Dr. Woit’s book describes the attraction and
ultimate disappointment of string theory. The attraction was the promise of
a theory with no need for all those constants; the disappointment was that
there were 10500 possible quantum vacua with no method to pick out the right
one. This fits well with the density operator formalism which, taken literally,
suggests that the vacuum is not a part of physics but instead is simply an
artifact of the mathematics.

And the large number of arbitrary constants do not appear so completely
arbitrary. For example, experimental measurements of some of the neutrino
mixing angles turn out to be small rational fractions of pi. And the masses of
the leptons are related (to within experimental error) by the formula discovered
by Yoshio Koide in 1982: 3(me+mµ+mτ ) = 2(

√
me+√mµ+

√
mτ )2, a 5−digit

coincidence. As Dr. Koide writes[3], the presence of the square root “suggests
that the charged lepton mass spectrum is not originated in the Yukawa coupling
structure at the tree level, but it is given by a bilinear form on the basis of some
mass generation mechanism.” Density operators provide that bilinear form.

Any time a new formalism is found, it is natural to first pick the low hang-
ing fruit. We will treat mass as if it were a force that converts left handed
particles to right handed particles and vice versa. As a “force”, mass is partic-
ularly simple because, in this model, the interactions correspond to Feynman
diagrams with only two legs. For the density operator theory, these are the
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low hanging fruit, and we will apply it to the Koide relation, extending it to
the neutrinos. And we will finish with other, more speculative applications.

A word on the poetry that begins each chapter. These are works by a
famous author. They were published sufficiently long ago that their copyright
has expired. I quote them without attribution in the knowledge that, so long as
our civilization survives, you will be able to quickly locate the author using the
internet. Perhaps, after such a search, you will find that the unquoted portions
of the poetry reads on the physics topic. And if you are insufficiently interested
to make this small effort, a proper citation will provide you no advantage.

Regarding citations of other’s work, this text is intended as a practical work,
a training tool for graduate students more interested in the methods than the
authors. A bit of stolen doggerel:

When ’Omer smote ’is bloomin’ lyre,
He’d ’eard men sing by land an’ sea;

An’ what he thought ’e might require,
’E went an’ took – the same as me!

Carl Brannen
Redmond, Washington, USA

January 19, 2008





Introduction

TRY as he will, no man breaks wholly loose
From his first love, no matter who she be.

Oh, was there ever sailor free to choose,
That didn’t settle somewhere near the sea?

The Thief’s Lover

T o be added later. At the moment I can’t get myself to actually put on
paper what I am thinking of for this, but it amounts to a short story.
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Foundations

Lesser men feign greater goals,
Failing whereof they may sit

Scholarly to judge the souls
That go down into the pit,

And, despite its certain clay,
Heave a new world toward the day.

T his text differs from the usual introductions to elementary particles
in that it assumes that elementary particles are best represented in density

matrix form rather than state vector form. In quantum mechanics it is often
said that density matrices are an alternative, equivalent, method of representing
quantum states and this is true. Where density matrices differ from state
vectors is in quantum field theory. Since the standard model of elementary
particle physics is a quantum field theory, the difference between the theories
gives a different persepctive on elementary particles. In this chapter we review
the foundations of quantum mechanics with an eye to justifying the use of
density matrices instead of state vectors.

0.1 Particle Waves

The first surprise that quantum mechanics brought to physics was the fact that
matter can interfere with itself. Let a beam of particles impinge on a barrier
with two slits. This produces two beams of spreading particles on the far (right)
side of the barrier. These two beams are caught on a screen. One finds that
the particles produce an interference pattern on the screen. See Fig. (0.1).

The intereference patterns are reminiscent of those resulting from classical
waves, however, the image is formed by a large number of individual particle
hits on the screen, and the image will form even when the experiment is run at
such low particle production rates that only a single particle is present in the
apparatus at a time.

The pattern only forms when a particle is allowed to go through either of the
two slits. If, for example, one arranged for two different particles sources to feed
the slots, one feeding only the upper slit and the other feeding only the lower

1



2 INTRODUCTION

Source Barrier Screen

C
CCO

Interference Pattern

Figure 0.1: The Two Slit Experiment: Quantum particles impinge on a
barrier with two slits. Particles that pass the barrier form an image on the

screen that exhibits interference.

slit, the interference pattern disappears. The implication is that the particle
somehow interferes with itself by passing through both slits simultaneously.

For any single particle, quantum mechanics assumes that it is impossible
to predict exactly where the particle will end up. Instead, quantum mechanics
allows one to compute a probability density. Given a wave function ψ(x; t),1 the
probability density ρ(x; t) is given by ρ(x; t) = |ψ|2 = ψ∗ψ where a∗ indicates
the complex conjugate of a.

In classical wave interference, one supposes that two wave sources, say A
and B are present in the same region. These two wave sources produces two
waves FA(x; t) and FB(x; t) which we will take, for simplicity to be real valued
functions of position and time. In order for interfere to occur, FA and FB
must be able to take both positive and negative values. The interference occurs
because their signs cause them to partially cancel when they are added together
to give the total wave, F = FA(x; t) + FB(x; t).

In summing two classical (or quantum) waves, we are making the assump-
tion of the “law of superposition”. Classically, superposition tends to work for
waves of sufficiently small amplitude. In quantum mechanics, superposition al-
ways works, but is of a nature somewhat different from classical superposition
as will discuss in the next chapter.

Quantum mechanics is a probabilistic theory and the results of a calculation
is a probability. Since probabilities cannot be negative, and yet matter waves
must be able to interfere, one cannot take the quantum wave function to be
a probability. Instead, one takes the squared magnitude, |ψ|2, of the wave
function as the probability. In the classical case, the squared magnitude of a

1We will use x to mean the x-coordinate or all the spatial coordinates, but we will
try to carefully use the semicolon to separate the space and time parameters, for example,
ψ(x; t) = ψ(x, y, z; t).
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wave function is the energy.
In a classical wave, both the amplitude and phase are observable. For

example, one can measure the height and arrival times of waves on the ocean.
With the right instruments, one can similarly measure the amplitude and phase
of an electromagnetic waves. One can do this without significantly modifying
the classical wave. One can therefore arrange for experiments with waves with
known amplitude and phase.

The situation in quantum mechanics is more difficult. The squared ampli-
tude of the probability wave gives the probability density for position |ψ(x; t)|2,
while the momentum operator ih̄∇ applied to the wave function gives the wave
function for momentum, ψp:

ψp(x; t) = ih̄∇ψ(x; t). (1)

The probability density for momentum is then |ψp(x; t)|2.
If we multiply the wave function ψ(x; t) by a complex phase exp(iκ) where

κ is real, neither of the probability densities, that for momentum or position, is
changed. More generally, let Q be an operator, for which we wish to calculate
an average value. We have:

〈Qψ〉(t) =
∫
ψ∗(x; t)Qψ(x; t) d3x, (2)

where the subscript on Q denotes that this is the average for the quantum
state ψ, which average in general depends on the time t. Define ψ′(x; t) =
exp(iκ)ψ(x; t) with κ real so that ψ′ is related to ψ by an overall (global)
phase change. Since ψ contributes bilinearly in the formula for average value,
Eq. (2), the average value for Q will be the same for ψ and ψ′.

We are left in the somewhat contradictory situation that the phase of a
quantum state is apparently unneeded in physical measurements of the system
it represents, but is necessary for interference to occur. The contradiction will
be resolved by going to the density matrix representation.

0.2 Wave Function Density Matrices

In the usual state vector formalism, the fundamental object is the wave function
ψ(x; t). This must be modified to produce a probability density by multiplying
by ψ∗(x; t). However, if one so multiplies a wave function, one loses the phase
information. A method that allows both the probability and phase information
to be directly encoded in the same mathematical object is to instead multiply
by ψ∗(x′; t) where x′ is allowed to vary independently of x. The result is the
“density matrix” wave function:

ρ(x, x′; t) = ψ∗(x′; t) ψ(x; t). (3)

Since the density matrix wave function depends bilinearly on ψ, multiplying
the state ψ by an arbitrary complex phase results in no change to the density
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matrix wave function. The unphysical arbitrary complex phase has been re-
moved. In addition, the probability density for position is now given by the
“diagonal elements” of the density matrix:

|ψ(x; t)|2 = ρ(x, x; t). (4)

To get the probability density for momentum, we

0.3 Consistent Histories Interpretation

Consistent Histories section content goes here



Chapter 1

Finite Density Operators

For remember (this our children shall know: we are too near for that knowledge)
Not our mere astonied camps, but Council and Creed and College—
All the obese, unchallenged old things that stifle and overlie us—
Have felt the effects of the lesson we got—an advantage no money could buy

us!

T he standard practice in quantum mechanics has been to treat the state
vector as the fundamental description of a quantum state and the density

operator as a derived object. In this chapter we reverse this relationship and
treat the density operator as the fundamental description of a quantum state.

1.1 Traditional Density Operators

In this section we introduce density operators as they are commonly taught,
with a bit of an emphasis on the fundamental nature of them. We will loosely
skim the excellent class notes of Frank C. Porter[4], to which the reader is
directed.

We begin with a state space, with a countable orthonormal basis {|un〉, n =
1, 2, ...}. A system in a normalized state |ψ(t)〉 at time t can be expanded as:

|ψ(t)〉 =
∑
n

an(t)|un〉. (1.1)

Normalization implies that
∑
n |an(t)|2 = 1.

An observable Q can be expanded in this basis as:

Qmn = 〈um|Q|un〉, (1.2)

and the expectation value of Q(t) for the system |ψ(t)〉 is:

〈Q〉 = 〈ψ(t)|Qψ(t)〉 =
∑
n

∑
m

a∗m(t)an(t)Qmn. (1.3)

5



6 CHAPTER 1. FINITE DENSITY OPERATORS

Note that 〈Q〉 is quadratic in the coefficients an.
Define the density operator ρ(t) as:

ρ(t) = |ψ(t)〉〈ψ(t)|. (1.4)

Since |ψ(t)〉 is normalized, the density operator is idempotent:Pure density operators are
idempotent.

ρ2(t) = ρ(t). (1.5)

Writing ρ(t) in the um basis we have:

ρmn = 〈um|ψ(t)〉〈ψ(t)|un〉 = am(t)a∗n(t). (1.6)

These matrix elements appear in Eq. (1.3) and consequently we can rewrite
the expectation value of Q using the density operator:

〈Q〉(t) =
∑
m

∑
n am(t)a∗n(t)Qmn

= tr(ρ(t) Q). (1.7)

Let {q} be a subset of the eigenvalues of Q. Define P{q} as the projection
operator that selects these eigenvalues. Then the probability that a measure-
ment will lie in {q} is

P ({q}) = tr(P{q}). (1.8)

If {q} is the whole spectrum of Q, then the projection operator is unity and
the probability is one. Thus:

tr(ρ(t)) = 1. (1.9)

The time evolution of a state |ψ(t)〉 is given by Schroedinger’s equation:

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (1.10)

where H(t) is the Hamiltonian operator. When put into density operator form,
the equation becomes:

d

dt
ρ(t) =

1
i
[H(t), ρ(t)]. (1.11)

We have showed that the density operator ρ(t) allows computation of ex-Density operators are on
an equal footing with state
vectors in the foundations
of quantum mechanics.

pectation values and probabilities, and we’ve shown the equation for time evo-
lution. This is apparently all that can be known about a quantum state, so
the density operator is an alternative formulation for quantum mechanics on
an equal footing with the state vector formalism from which we derived it.

1.2 An Alternative Foundation for QM

With two alternative formulations for quantum mechanics we have a choice.
The two methods will give the same answer, but for any particular problem,
one or the other is likely to give an easier calculation. And one or the other
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might be closer to the underlying physics. We now look at the two formulations
from the point of view of which is more likely to be useful in understanding
the foundations of physics.

Both the density operator formalism and the state vector formalism share
the same operators so there is no difference here. But the state vector formalism
also requires states and in this sense the density operator formalism gets by
with fewer mathematical objects. Since the operators alone are sufficient to
describe a quantum state, the state vectors are only ancillary mathematical
devices used for calculational convenience.

Density operator formalism is particularly well suited to statistical analy-
sis of quantum mechanical systems. For example, the entropy of a quantum
ensemble is defined by the simple equation:

S = −k tr(ρ ln(ρ)). (1.12)

This is an advantage for the density operator formalism.
Given two solutions to the Schroedinger equation, |ψ(t)〉 and |φ(t)〉, any

linear combination is also a solution. That is, the solution set is linear. The
same cannot be said of the density operator formulation. The advantage is
with the state vector formalism, but this is a calculational advantage only, and
later in this chapter we will show that linear superposition can be translated
advantageously into the density operator formalism. Our models of reality are
not inherently simpler when they are linear, instead they are simpler to use in
calculations.

Calculations in the state vector formalism use an inner product which is
inherently complex valued, while the corresponding calculations in the usual
density operator formalism use the trace of a matrix. The trace is a complex
function defined on the set of operators. In later chapters we will give a ge-
ometric interpretation of these complex numbers that will allow us to make
calculations that are difficult or impossible in the state vector language.

States represented by a state vector carry a phase ambiguity while the den- Density operators have no
phase ambiguity.sity operator states are completely defined. This is an advantage for the density

operator formulation. We will later show that when translating a density oper-
ator state into state vector form, one must reintroduce this phase ambiguity in
the form of a choice of spin direction. Thus the origin of the gauge symmetries
appears to be related to a geometric choice.1

1.3 Eigenvectors and Eigenmatrices

Up to this point we’ve been discussing density operators in general. We will
now specialize to the pure density operators, that is, the ones that correspond
to state vectors. If the author mentions “density operator” or “density matrix”

1One might suppose that the density operator formulation would be at a disadvantage to
the state vector form on problems associated with gauge forces, but this was recently shown
not to be the case by Brown and Hiley.[5] Also see [6].
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the reader should assume that he means “pure density operator”. Furthermore,
we will almost entirely be dealing with spin and internal degrees of freedom.

For the remainder of this chapter we will explore the density operator theory
of the Pauli algebra. The usual introduction to the Pauli algebra involves the
representation known as the Pauli spin matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

+i 0

)
, σz =

(
+1 0
0 −1

)
. (1.13)

Most physicists would associate the Pauli spin matrices with a representation
of a Lie algebra, but in this book we will instead associate them with a Clifford
algebra. The reader is not expected to know anything of Clifford algebra; we
will introduce the necessary concepts in this chapter and the next. For now,
let us only mention that Clifford algebras are also Lie algebras, but there are
many Lie algebras that are not Clifford algebras.

In order to illustrate the uses of the pure density operators, we now discuss
the classic eigenvector problem[7, §54] for spin-1/2 from the point of view of
state vectors and density operators.

A particle with spin 1/2 is in a state with a definite value sz = 1/2.
Determine the probabilities of the possible values of the components
of spin along an axis z′ at an angle θ to the z-axis.

This problem can be solved in a number of ways. Landau uses the fact
that the mean spin vector of the particle along the z′ directions is cos(θ), along
with the fact that this average is given by (w+ − w−)/2 where w± are the
probabilities for the spin value along a′ being measured as ±1/2. Then, since
w+ + w− = 1, the result, w+ = (1 + cos(θ))/2, can be deduced by algebra.

A more direct way of solving this problem is to find eigenvectors corre-
sponding to spin-1/2 oriented in the z and z′ directions, and then computing
the probability with the formula P = |〈z|z′〉|2. This method is somewhat in-
volved. If the vectors z and z′ were more arbitrary, the problem would be even
worse.

In the density operator formalism, the states are operators along with the
particles. So the solution of the eigenvector equations are trivial. As with
the state vector formalism, let us first define the operator for spin-1/2 in an
arbitrary direction. To do this, we first define:

~σ = (σx, σy, σz) (1.14)

where σχ are the usual Pauli spin matrices. Then the projection operators for
spin in the ~u direction is given by:

~u · ~σ = uxσx + uyσy + uzσz. (1.15)

where uχ are the components of the vector ~u.
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The traditional way of solving this problem with state vectors is to write
out the eigenvector equation with the operator for spin-1/2 in the ~u direction,
which is simply half the projection operator:

((1/2)~u · ~σ) |u+〉 = (+1/2) |u+〉, (1.16)

then substituting the Pauli spin matrices for ~σ, and then solving the resulting
matrix equation. This can be a fairly involved activity for the new student. In
addition, even if the student uses the technique that requires normalization of
the eigenvectors, their phases are still arbitrary.

One would think that solving the same problem with density operators
would be more difficult because there are more apparent degrees of freedom
with the state, but this is not the case. First, one must know how two projection
operators multiply: Multiplication of Pauli

matrices.
(~u · ~σ)(~v · ~σ) = ~u · ~v + i(~u× ~v) · ~σ. (1.17)

In particular, when ~u = ~v in the above equation, one finds that the right hand
side is one.

Thus the matrix eigenvector equation is solved trivially by (1 +~u ·~σ). That Density operator equa-
tions have a simple closed
form solution.

is:
((1/2)~u · ~σ) (1 + ~u · ~σ) = (+1/2)(1 + ~u · ~σ). (1.18)

While this is a solution to the matrix eigenvector equation, it is not normalized
as density operators are supposed to be, that is, ρ2 = ρ by Eq. (1.5). Instead,
the square of (1 + ~u ·~σ) is twice itself, so our normalization is off by a factor of
two. The correct density operator corresponding to spin-1/2 in the ~u direction
is therefore given by:

ρu = (1 + ~u · ~σ)/2, (1.19)

and we have a closed form solution for the density operator eigenmatrix problem
in an arbitrary direction ~u.

When one tries to solve the general spin-1/2 eigenvector problem in the
state vector formalism, one discovers that it is not so simple as the matrix
problem. One does not have the easy option of writing the answer in terms
of the Pauli matrices themselves (and therefore avoiding any mention of the
particular representation chosen). One finds that ones solution fails for certain
vectors, which we now illustrate.

Canceling out the factor of 1/2 on both sides, the state vector eigenvector The corresponding state
vector equation has no
closed form solution.

equation is: (
uz ux − iuy

ux + iuy −uz

)(
a
b

)
=
(
a
b

)
(1.20)

or (
uz − 1 ux − iuy
ux + iuy −uz − 1

)(
a
b

)
= 0. (1.21)
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An obvious solution to this problem is(
ux − iuy
1− uz

)
, (1.22)

however, when ~u = (0, 0, 1), the above is zero and cannot be normalized. An-
other obvious solution is: (

1 + uz
ux + iuy

)
, (1.23)

but this solution is zero when ~u = (0, 0,−1). In addition to these two solutions,
we can choose any linear combination. As the astute reader recognizes, any of
these more general solutions will also be zero for some value of ~u.

So we see that the problem, when written in terms of the pure density
operators, has a simple general solution, but when written in the traditional
state vector form, the problem is more difficult.

Let us illustrate the power of the density operator formalism by restatingDensity matrix formalism
is more powerful. the given problem in more general terms:

A particle with spin 1/2 is in a state with a definite value su = 1/2
for spin measured in the direction ~u. Determine the probability of
a measurement of spin +1/2 along the ~v axis.

By symmetry, we know that the answer to the above problem is (1 +
cos(θ))/2 where θ is the angle between ~u and ~v. To solve it with the state
vector formalism, we compute the eigenvectors for the two directions, then
take the probability as the square of their dot product. In the density operator
formalism, the answer is given by a trace:

w+ = tr(ρuρv), (1.24)

where ρχ is the density operator for spin in the ~χ direction.
Using the formula for the density operator solution of the eigenvector prob-

lem, Eq. (1.19), the probability computes as:

w+ = tr(ρu ρv)
= tr((1 + ~u · ~σ)/2(1 + ~v · ~σ)/2)
= tr(1 + (~u+ ~v) · ~σ/2 + (~u · ~σ)(~v · ~σ))/4.

(1.25)

The trace function keeps only the scalar part of its argument, and since the
representation is done with 2× 2 matrices, we have that tr(1) = 2. Applying
Eq. (1.17), we obtain:

w+ = 2(1 + ~u · ~v)/4 = (1 + cos(θ))/2, (1.26)

the same as with the state vector calculation.
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1.4 Bras and Kets

In the previous section we saw that the density operator formulation allows
the spin eigenvector problem to be solved in closed form while the state vector
formulation cannot. Consequently, when the theory is taught in the state
vector formulation, problems are left in eigenvector form rather than solved.
The reason for the failure was that for any given general form solution in the
state vector language, there is a direction where the solution becomes zero. But
as we saw above, it is possible to find two complementary solutions, that is,
solutions complementary in that one or the other (or both) provide solutions for
any given direction. In this section we further discuss this fact in the context
of how one obtains a state vector from a density operator.

One of the strengths of the density operator formulation is that it allowed us Density operator formal-
ism is naturally indepen-
dent of the choice of rep-
resentation of the Pauli al-
gebra.

to write the normalized solution to the eigenvector equation without reference
to the representation of the Pauli algebra: (1 + ~u · ~σ)/2. But to show the
connection to state vectors, let us write this solution explicitly using the Pauli
matrices:

ρu = (1 + ~u · ~σ)/2

= 1
2

(
1 + uz ux − iuy
ux + iuy 1− uz

)
.

(1.27)

Comparing the vectors of the above with Eq. (1.22) and Eq. (1.23), we see
that the density operator eigenmatrix solution is composed of the two obvious
solutions to the state vector eigenvector problem.

Now the two obvious state vector solutions to the eigenvector problem can
be written in “square spinor” [8] form by filling in the unneeded columns of
the matrices with zero. Then those two solutions sum to the density operator
solution as follows:

1
2

(
1 + uz ux − iuy
ux + iuy 1− uz

)
=

1
2

(
1 + uz 0
ux + iuy 0

)
+

1
2

(
0 ux − iuy
0 1− uz

)
.

(1.28)
In the above, the left hand side is the density operator solution, and the right
hand side are two (not normalized) solutions to the state vector problem.

In the context of density operators, a natural method of converting the
density operator solution to one of the square spinor solutions on the right hand
side of Eq. (1.28) is to multiply by another density operator. In particular, note
that the matrices for spin-1/2 in the ±z direction, that is, ρ±z = (1± σz)/2;

ρ+z =
(

1 0
0 0

)
ρ−z =

(
0 0
0 1

) (1.29)

convert the density operator solution to the two complementary spinor solu-
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tions:

1
2

(
1 + uz 0
ux + iuy 0

)
= 1

2

(
1 + uz ux − iuy
ux + iuy 1− uz

)(
1 0
0 0

)
1
2

(
0 ux − iuy
0 1− uz

)
= 1

2

(
1 + uz ux − iuy
ux + iuy 1− uz

)(
0 0
0 1

) (1.30)

The matrices on the left hand side above are equivalent to spinors. To see this,A column vector can be
kept in matrix (“square
spinor”) form.

notice that matrices that have all but one column zero act just like vectors.
That is, the zeroes are conserved under multiplication by a constant, under
addition with another square spinor matrix, and under multiplication by an
arbitrary matrix on the left. These are all the things we require of kets.

Putting what we have found into density operator language, we find that
the way one converts a density operator into ket form is to simply multiply on
the right by a constant density operator. In the examples above, multiply on
the right by ρ±z.

For the moment let us choose the positive spin−1/2 in the +z direction.Bras and kets defined us-
ing density operators. The ket is defined as:

|u〉 = ρu ρ+z (1.31)

If one reverses the order:
〈v| = ρ+z ρv (1.32)

one obtains the bra form. These bras and kets are not normalized. Con-
sequently, if we are to perform calculations, we must divide by the proper
normalization constant, a subject we will take up after discussing scalars.

In the state vector formalism, multiplying a bra by a ket gives a scalar.
Let’s work out what it does in density operator formalism:

〈v|u〉 = ρ+z ρv ρu ρ+z

= 1
4

(
1 0
0 0

)(
1+uz ux−iuy
ux+iuy 1−uz

)(
1+vz vx−ivy
vx+ivy 1−vz

)(
1 0
0 0

)
= 1

4

(
1+uz ux−iuy

0 0

)(
1+vz 0
vx+ivy 0

)
= 1

4 (1+uz)(1+vz) + (ux−iuy)(vx+ivy)
(

1 0
0 0

)
.

(1.33)
Note that the above is a complex multiple of ρ+z. The set of all such ma-Complex numbers as com-

plex multiples of idempo-
tents.

trices act just like the complex numbers. For example, if a and b are arbitrary
complex numbers, then:

aρ+z + bρ+z = (a+ b)ρ+z, and
(aρ+z)(bρ+z) = (ab)ρ+z,

(1.34)

so complex multiples of ρ+z act just like complex numbers. This means that
if we define all of our bras and kets in a consistent manner with ρ+z, our bras
and kets will multiply to complex multiples of ρ+z, and these act just like the
complex numbers.
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It remains to normalize the bras and kets we’ve defined in Eq. (1.32) and
Eq. (1.31). Using the bra ket multiplication formula in Eq. (1.33), we have
that

〈u|u〉 = 1
4 (1 + 2uz + u2

z + u2
x + u2

y). (1.35)

So the normalization factor for 〈v|u〉 is the square root of the above multiplied
by the same thing for v. That is, since probabilities are proportional to the
squared magnitude of 〈v|u〉, the probability of the spin being measured as +1/2
in the v direction is:

w+ =
〈v|u〉〈u|v〉
〈v|v〉〈u|u〉

(1.36)

We leave it as an exercise for the reader to verify that the above reduces to
(1 + ~u · ~v)/2.

We have shown that density operators can be converted to spinor form by
pre or post multiplying by ρ+z, a constant density operator. This brings the
spinors into density operator form, but there is a problem. If u = −~z, then
the product ρ−z ρ+z is zero. This problem is identical to the issue that spinors
had when we tried to write down a general solution to the eigenvector problem.
We can get around it as we did before, by choosing a different vacuum density
operator. Or better, by avoiding the spinor formalism where possible.

Since the z direction is not in any way special, our analysis of how to The “vacuum” density op-
erator state is an arbitrary
choice.

convert density operators to bras and kets using ρ+z can be redone with any
other constant density operator. The choice of this constant density operator
defines the phase of the bra and ket that is produced. We will discuss this
in greater detail in a later sections and chapters. For now, let us choose the
notation ρ0 to specify a constant density operator that need not be aligned in
the +z direction. For reasons that will become clear in later chapters, we will
follow Julian Schwinger[9] and call ρ0 the “vacuum” state.

So with ρ0 as our choice of constant density operator, the conversion from Bras and kets from vac-
uum state.density operators to bras and kets is:

|u〉 = ρu ρ0

〈v| = ρ0 ρu.
(1.37)

We now prove that these definitions give bra-kets that are complex multiples
of ρ0.

Write ρ0 = |0〉〈0|, and similarly for u and v. LetM be an arbitrary operator.
Then the matrix element of M for u and v is:

〈u|M |v〉 → ρ0 ρu M ρv ρ0

= |0〉〈0||u〉〈u|M |v〉〈v||0〉〈0|
= 〈0|u〉〈u|M |v〉〈v|0〉|0〉〈0|,
= 〈0|u〉〈u|M |v〉〈v|0〉 ρ0.

(1.38)

which is seen to be a complex multiple of ρ0. The result is that this definition
differs from the usual only in the normalization. From the above, we see that
the normalization can be fixed by dividing bras by 〈0|u〉 and dividing kets by
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〈v|0〉. From this normalization it is clear why it is that this method only works
when |0〉 is not antiparallel with any of the bras and kets which are being
converted.

1.5 Naughty Spinor Behavior

For the Pauli algebra, we convert from density operator formalism to state
vector formalism by choosing a vacuum, a constant pure density operator ρ0.
An arbitrary pure Pauli density operator has, at any given point in space-time,
a spin orientation. This gives us a geometric interpretation of the source of the
arbitrary complex phase seen in the state vector formalism. We can apply this
interpretation to explain the odd behavior of spinors from a density operator
point of view.

It is well known that when a spinor is rotated by 2π it does not return toSpinors are naughty.
its original value but instead is multiplied by −1. Since density operators do
not have an arbitrary complex phase, this behavior cannot happen with the
density operators.

The operator that rotates a spinor by an angle λ around a rotation axis
defined by the vector ~u is simply:

U(λ) = eiλ~u·~σ/2 = eiλσu/2 (1.39)

Let |v〉 be an arbitrary ket. We can write:

|v〉 = (1 + σu)/2 |v〉+ (1− σu)/2 |v〉. (1.40)

Applying the rotation operator to this gives:

U(λ) |v〉 = U(λ)(1 + σu)/2 |v〉+ U(λ)(1− σ + u)/2 |v〉
= e+iλ/2(1 + σu)/2 |v〉+ e−iλ/2(1− σu)/2 |v〉, (1.41)

where we have taken advantage of the fact that (1 +σu)/2 is both a projection
operator and an eigenvector of σu. Putting λ = 2π gives

U(2π)|v〉 = −(1 + σu)/2 |v〉 − (1− σu)/2 |v〉,
= −|v〉. (1.42)

The above showed how one rotates a ket. To rotate a bra, one puts the rotation
operator on the other side, and because of the complex conjugate, the spin
operator takes a negative angle, U(−λ)

If we replace |v〉 with a density operator, or any other operator, the sameDensity operators are well
behaved. mathematics would apply. What is different about density operators is how

they are rotated. For a density operator, the rotation operator must be applied
to both sides of the density operator. This gives two factors of −1. Thus a
density operator is unmodified when rotated through 2π using the rotation
operators.

Applying the rotation operator to a spinor made from density operators,
we see what the source of the factor of −1 is. When a spinor made from
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density operators is to be rotated by spinors, one must include an extra rotation
operator. Done the density operator way we have:

U(λ)|u〉〈u|U(−λ) U(λ)|0〉〈0|U(−λ)
= U(λ)|u〉〈u|0〉〈0|U(−λ). (1.43)

Putting λ = 2π leaves the state unchanged, consistent with the fact that density
operators are unchanged by rotations of 2π. Thus, from the density operator
point of view, the −1 that a ket takes on rotation by 2π is a consequence of
failing to rotate the vacuum bra, 〈0|.

In the state vector formulation of QM, there is a conflict between normal- Density operators are sim-
ple in normalization.ization and linearity.2 The linear combination of two normalized state vectors

is generally not a normalized state vector. If, on the other hand, we associate
the states with the rays then we retain a sort of linearity, but our formula for
probabilities becomes more complicated as we must normalize. Since density
operators are essentially non linear, there is no temptation to sacrifice unique-
ness for linear superposition.

1.6 Linear Superposition

As we saw in the previous section, the lack of arbitrary complex phase makes
density operators a natural way of representing quantum states. On the other
hand, an advantage of spinors is that they allow linear superposition. That
is, given two spinors |A〉 and |B〉, and two complex numbers, a and b, we can
define the linear superposition:

|aA+ bB〉 = a |A〉+ b |B〉. (1.44)

For any two given spinors, for example, |A〉 and |B〉, the linear superposition Linear superposition re-
quires a choice of complex
phase.

is well defined. But it is not stressed to those learning physics that the linear
superposition is not well defined for the quantum states A and B. That is, to
define |aA + bB〉, we must first choose kets to represent A and B. And since
the choice of ket is arbitrary up to a complex phase, the linear superposition
is also arbitrary.

If we do not require that the kets be normalized the arbitrariness of linear
superposition becomes extreme. For example, let A be +1/2 spin in the +z
direction, and let B be +1/2 spin in the −z direction. For the ket representing
A and B, let u and v be arbitrary non zero real numbers. Then we can choose:

|+ z〉 =
(
u/a
0

)
, | − z〉 =

(
0
v/b

)
, (1.45)

and the linear superposition gives almost any quantum state:

a |+ z〉+ b | − z〉 =
(
u
v

)
. (1.46)

2In contrast to classical E&M, quantum mechanics, even in the usual state vector formu-
lation, is not physically linear. Three times a state vector is a state vector that corresponds
to the same physical situation (with the normalization changed), not a physical situation
with three times as many particles or particles that are three times stronger.
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This is the problem of linear superposition for spinors.
The world is presumably composed of quantum states rather than spinors,Quantum states are a part

of physics, spinors are
only mathematics.

so it we would like to have a method of defining linear superposition on quantum
states rather than on spinors. But the above demonstrates that in making such
a definition we must make some sort of choice. For spinors, the choice consists
of the arbitrary complex phases of the two (or more) spinors which we wish to
use, a rather inelegant definition.

In Eq. (1.31) we defined kets from the density operator formalism by choos-
ing a “vacuum” state and multiplying on the right by this state. We can there-
fore define linear superposition by choosing a vacuum state, using it to convert
the (unique) density operators to bras and kets:

|aA+ bB〉 = a ρA ρ0 + b ρB ρ0,
〈aA+ bB|a = a ρ0 ρA + b ρ0 ρB .

(1.47)

And we can now multiply our ket by our bra to get what we will show toLinear superposition for
density operators requires
a choice of vacuum state.

be a complex multiple of a pure density operator corresponding to the linear
superposition:

k ρaA+bB,0 = (a ρA ρ0 + b ρB ρ0, )(a ρ0 ρA + b ρ0 ρB)
= (a ρA + b ρB , ) ρ0 (a ρA + b ρB), (1.48)

where k is a complex constant (and may be zero). Note that choosing a = 1, b =
0 or a = 0, b = 1 gives a result that is proportional to ρA or ρB , respectively,
as in the usual linear superposition.

Let X and Y be arbitrary operators, not necessarily pure states, and ρ0 =
|0〉〈0| be a pure density operator. We now show that the product X ρ0 Y is a
complex multiple of a pure density operator. Compute the square:

(X ρ0 Y )2 = X ρ0 Y X ρ0 Y,
= X |0〉〈0| Y X |0〉〈0| Y,
= X |0〉 (〈0| Y X |0〉) 〈0| Y.

(1.49)

The quantity in parentheses in the above is a complex number and so can be
factored out of the operator product to give:

= 〈0| Y X |0〉 (X |0〉〈0| Y ),
= 〈0| Y X |0〉 (X ρ0 Y ). (1.50)

And sinceX ρ0 Y squares to a complex multiple of itself, it is therefore an idem-
potent multiplied by that complex number. It remains to show that X ρ0 Y is
a primitive idempotent. To do this, compute the trace:

tr(X ρ0 Y ) = tr(X |0〉〈0| Y ) = 〈0| Y X |0〉. (1.51)

Since the trace is precisely the complex multiple of Eq. (1.50), X ρ0 Y divided
by this multiple is a pure density operator.



Chapter 2

Geometry

I have stated it plain, an’ my argument’s thus,
(“It’s all one,” says the Sapper),

There’s only one Corps which is perfect – that’s us;
An’ they call us Her Majesty’s Engineers,
Her Majesty’s Royal Engineers,
With the rank and pay of a Sapper!

T he program of contemporary physics is to produce a unified descrip-
tion of nature by looking for symmetries between the forces and particles.

Where the forces are not symmetric, similarities are looked for and “sponta-
neous symmetry breaking” is assumed. While this plan has been successful in
making great progress, the forward movement of that progress has been stalled
for some years. The primary difficulty appear to be that symmetry principles
allow too many different possibilities, and their application leaves too many
arbitrary parameters that must be supplied by experiment.

This book will break with tradition and instead assume that geometry is
at the foundation of physics. Our wave functions will be written in terms of
scalars, vectors, pseudo vectors and pseudo scalars. These correspond to the
traditional objects of geometry known to the ancients, points, lines, planes and
volumes. The reader can suppose the correspondence between the traditional
geometric objects and the geometry we will use here correspond to stresses
induced by particles in the fabric of space-time, but this is not necessary, and
we will not enlarge on the idea.

Traditional quantum mechanics is written with complex numbers. These
are used in very particular ways in the standard theory. In this chapter we
take advantage of these peculiarities and show that we can replace them with
a geometric theory.

17
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2.1 Complex Numbers

Let ρ0 be any pure density operator, and let M be any operator. Then the
product

ρ0 M ρ0 (2.1)

is a complex multiple of ρ0 as can be seen by replacing ρ0 with the its spinor
representation, |0〉〈0|. For example, choosing 0 to be spin+1/2 in the +z
direction, we have:

ρ0Mρ0 =
(

1 0
0 0

)(
M11 M12

M21 M22

)(
1 0
0 0

)
= M11

(
1 0
0 0

)
.

(2.2)

Any product of operators that begins and ends with the same pure densityIn the density matrix for-
malism, the complex num-
bers are a subset of the op-
erators, and which subset
depends on the choice of
vacuum.

operator thus provides a version of the complex numbers. But it needs to be
stressed that the form of these complex numbers depend on the choice of the
vacuum operator.

Since our complex numbers depend on the choice of vacuum, we cannot
follow the usual assumption of the spinor formalism which interprets the com-
plex number a+ ib as a complex multiple of the unit matrix. That is, we will
distinguish the complex numbers from the operators:Numbers, real or complex,

are not a sort of operator.

a+ ib 6=
(
a+ ib 0

0 a+ ib

)
. (2.3)

For us, the complex numbers are only a mathematical convenience used for
calculational purposes. Our complex numbers will arise from products that
begin and end with the same pure density operator, and when we refer to them
as complex numbers it is only for the convenience of not having to haul around
the pure density operator that defines them. A logical consequence is that we
should distinguish between the unity “1” of the complex numbers and the Pauli
algebra. We will do this when convenient, but the old habits are hard to break.

Given this use of the complex numbers, we need to clear up the interpre-
tation of the use of complex numbers in the definitions of the Pauli matrices.
First, let us note that there are real representations of the Pauli algebra, for
example:  0

+1
−1

 ,

 −1
0

+1

 ,

 +1
−1

0

 . (2.4)

Second, the imaginary unit of the Pauli matrices can be obtained from the
product of the three Pauli matrices:

σxσyσz =
(

i 0
0 i

)
, (2.5)
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and so avoid the use of complex multiples of operators. As an example of our
use of complex numbers, consider the commutation relations that define the
Pauli algebra. Rather than writing [σx, σy] = 2iσz, we will instead write:

[σx, σy] = 2(σxσyσz) σz = 2σxσy, (2.6)

where the second equality comes from the fact that σzσz = 1.
After replacing the imaginary unit in the commutation relations, we can The complex commutation

relations of the Pauli alge-
bra are replaced by a real
Clifford algebra.

break apart the commutator and turn the equations into somewhat simpler
anticommutation relations. Along with the fact that the squares of the σχ
square to unity, this gives a definition of the Pauli algebra that avoids complex
operators:

σ2
x = σ2

y = σ2
z = 1

σxσy = −σyσx
σyσz = −σzσy
σzσx = −σxσz.

(2.7)

These equations form the definition of a Clifford algebra. More complicated
Clifford algebras will be the subject of later chapters and will be explained
then.

Using the equations of Eq. (2.7), any product of Pauli algebra elements can
be reduced in length to ± a product of at most three different Pauli algebra
elements. For example:

σxσyσyσyσxσzσx = σx(σyσy)σyσxσzσx = σx1̂σyσxσzσx
= σx(σyσx)σzσx = −σx(σxσy)σzσx
= −(σxσx)σyσzσx = −σyσzσx.

(2.8)

Furthermore, these products can be rearranged so that σx, σy and σz appear
in that order. For example:

σzσyσx = σz(σyσx) = −σz(σxσy)
= −(σzσx)σy = +(σxσz)σy
= σx(σzσy) = −σx(σyσz)
= −σxσyσz.

(2.9)

There are eight possible end results for these products, they are the “Pauli unit
multivectors”: Pauli unit multivectors

1̂, σy, σxσy, σxσz,
σx, σz σyσz, σxσyσz.

(2.10)

When operators are represented by 2× 2 complex matrices, there are four
complex numbers and therefore four complex degrees of freedom. Since we are
avoiding the use of complex numbers as operators, it makes sense to think of
the 2 × 2 complex matrices as having eight real degrees of freedom. Those
degrees of freedom are given by the Pauli unit multivectors. But the Pauli unit
multivectors are written in geometric form, that is, they are written in terms of
x, y and z. Thus the Pauli unit multivectors give us a geometric interpretation
of the 2× 2 complex matrices. For example, Operators always have a

geometric interpretation.
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(
1 0
0 0

)
≡ (1̂ + σz)/2(

i 0
0 0

)
≡ (σxσyσz + σxσy)/2(

0 1
0 0

)
≡ (σx − σxσz)/2

(2.11)

Since any product of Pauli matrices is ± one of the Pauli unit multivectors,
the Pauli unit multivectors are sufficient to represent any operator that is
made from Pauli matrices. That is, real linear combinations of the Pauli unit
multivectors are closed under multiplication.

The eight Pauli unit multivectors can be divided into subsets in severalThe Pauli blades are:
scalars, vectors, pseu-
dovector and pseu-
doscalar.

useful ways. Clearly 1̂ is a scalar. Following the tradition from Clifford algebra,
σx, σy, and σz are called vectors, σyσz, σzσx and σxσy are “pseudovector”, and
σxσyσz is a “pseudoscalar”. These are the four “blades” that we mention here
only for completeness. Blade value is conserved under addition but is not
conserved under multiplication.

The Pauli unit multivectors give either +1 or −1 when squared. ThisSignatures are always +1
or -1 is called the signature, and we can divide the eight elements according to

signature:

1̂2 = σ2
x = σ2

y = σ2
z = +1

(σxσyσz)2 = (σyσz)2 = (σzσx)2 = (σxσy)2 = −1.
(2.12)

In the Pauli algebra, the signature can be thought of as the presence or absence
of the imaginary unit σxσyσz. In later chapters we will be working with more
complicated Clifford algebras whose elements have more interesting signatures.
It turns out that the idempotents of a Clifford algebra are defined by the
elements that square to +1. Signature is conserved under addition, but not
conserved under multiplication.

Finally, the Pauli unit multivectors can be organized according to orienta-Orientations are n, x, y,
and z. tion. Three of the four orientations are the x, y and z directions. The fourth

is n, the neutral direction. Orientation is preserved under addition and under
multiplication follows these rules:

× n x y z

1̂ σxσyσz ∈ n n x y z
x̂ σyσz ∈ x x n z y
ŷ σzσx ∈ y y z n x
ẑ σxσy ∈ z z y x n

(2.13)

As the above table shows, under multiplication, orientation forms a finite group.
For the Pauli algebra, the neutral orientation is equivalent to half of the trace.
That is, if we use n(M) to denote the extraction of the neutral portion of an
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operator,

tr(M) = tr(M11̂ +Mxσx +Myσy +Mzσz
+Miσxσyσz +Mixσyσz +Miyσzσx +Mizσxσy)

= tr
(

M1 +Mz + iMi + iMiz Mx − iMy + iMix +Miy

Mx + iMy + iMix −Miy M1 −Mz + iMi − iMiz

)
= 2(M1 + iMi)
= 2 n(M).

(2.14)
We have some use of orientation in this chapter, and later on it will be useful
in classifying the primitive idempotents of more complicated Clifford algebras.

The three Pauli matrices σx, σy, and σz are associated with the three dimen-
sions x, y and z. Special relativity requires a time dimension, t, and to model
this spacetime requires that we add a sort of σt to the three Pauli algebras.
Each time one adds a new dimension to a Clifford algebra, the number of unit
multivectors is multiplied by two, so this will give us 16 unit multivectors. We
will cover this algebra, the “Dirac algebra” and its “Dirac unit multivectors”
in the next chapter and later chapters will add one more (hidden) dimension.

2.2 Expectation Values

There are at least three ways of defining expectation values of operators in the
pure density operator formalism. At the risk of increasing confusion, we will
consider all three in this subsection.

Given an operator M and a state A, in the usual bra-ket notation, one finds
the expectation value of M for the state A by finding a normalized spinor for
A, and then computing

〈M〉A = 〈A|M |A〉. (2.15)

To convert the above into an expectation value computed in the density oper- Vacuum expectation value
defined.ator formalism, we replace the spinors with the products of the pure density

operator and the vacuum operator as explained in Eq. (1.37). The result is
what we will call the “vacuum expectation value”:

〈M〉A,0 = ρ0 ρA M ρA ρ0, (2.16)

which, since it begins and ends with the vacuum operator ρ0, we can interpret
as a complex number. Writing Eq. (2.16) in spinor form:

〈M〉A,0 = |0〉〈0|A〉〈A|M |A〉〈A|0〉〈0|,
= 〈0|A〉 〈A|0〉 〈A|M |A〉 |0〉〈0|, (2.17)

shows that our definition of expectation value differs from the usual spinor
definition of Eq. (1.7) due to the influence of the vacuum. Of particular interest
is the vacuum expectation value of the unit operator 1̂:

〈M〉1,0 = ρ0 ρA 1̂ ρA ρ0,
= ρ0 ρA ρ0

= 〈0|A〉 〈A|0〉 |0〈〉0|.
(2.18)
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From this we see that we obtain the usual expectation values by taking the
ratio:

〈M〉A = 〈M〉A,0/〈1̂〉A,0, (2.19)

where the ratio is to be interpreted in our loose use of complex numbers. For
example, choosing ρ0 to be spin +1/2 in the +z direction,

a/b ≡
(
a 0
0 0

)/(
b 0
0 0

)
. (2.20)

We can also eliminate the vacuum from Eq. (2.16) and define the “expec-Expectation value without
vacuum. tation value” as:

〈M〉A = ρA M ρA,
= |A〉〈A|M |A〉〈A|
= 〈A|M |A〉 |A〉〈A|,

(2.21)

which defines the expectation value in terms of the ratio of ρAρMρA to ρA. This
is the form of expectation value that we will use most often, but we will use
it only in the context of comparing expectation values for different operators
M with respect to the same state A. If we wish to compare expectation values
for two different states, we will have to choose a vacuum and use the earlier
method of Eq. (2.16).

The third method of defining expectation values is to follow the spinor tra-
dition and use the trace. For the Pauli algebra, there is a geometric imaginary
unit, σxσyσz, which squares to −1 and commutes with all the elements of the
algebra. But not all Clifford algebras have an imaginary unit and for such
algebras defining the trace is more difficult. Accordingly, we will avoid the use
of the trace.

For the expectation value to be real, we must place the same restriction on
M as in the spinor theory, that is, M must be Hermitian. Note that as written,
the expectation value depends on the choice of vacuum. In general, we will be
concerned with operators that are not Hermitian and which therefore do not
have real expectation values. For these operators, we can use the complex
interpretation given above, or alternatively we can write the complex numbers
in terms of σxσyσz.1 For example, let the state be spin+1/2 in the +z direction,
and the operator be M = 3 − 2σxσy + σx. We can compute the expectation
value several ways: In the spinor representation, one converts the operator
into 2× 2 complex matrices by using the Pauli matrices, finds the bra and ket
associated with spin +1/2 in the +z direction, and multiplies them together:

〈M〉+z =
(

1 0
)( 3− 2i 1

1 3− 2i

)(
1
0

)
= 3− 2i

(2.22)

In the density operator formalism, the same calculation can be done without
use of the representation. The student will find it useful to work the example

1In later chapters we will generalize this appropriately.



2.2. EXPECTATION VALUES 23

out in detail. It can be done easily if one uses the anticommutation relations
to move the left pure density operator ρz+ over to the right side. Doing this
will cancel out some parts of the operator and leave other parts unchanged:

〈M〉+z = (1 + σz)/2 (3− 2σxσy + σx) (1 + σz)/2
= (3− 2σxσy + σx) (1 + σz)/4

+σz(3− 2σxσy + σx) (1 + σz)/4
= (3− 2σxσy + σx) (1 + σz)/4

+(3− 2σxσy − σx) σz (1 + σz)/4
= (3− 2σxσy + σx) (1 + σz)/4

+(3− 2σxσy − σx) (1 + σz)/4
= (3− 2σxσy) (1 + σz)/2,
= (3− 2σxσyσz) (1 + σz)/2.

(2.23)

The last equality was obtained by noting that (1 + σz)/2 = σz(1 + σz)/2, that
is, σz is an eigenvector of ρz+ with eigenvalue 1 so we can introduce factors of
it; that is, σz(1 + σz) = (1 + σz).

In the above calculation, the 3 and 2σxσyσz components contributed to the
expectation value while the σx component does not. Let us write Mχ as the
operator that is any one of the eight degrees of freedom of the Pauli algebra.
That is, M1 = 1̂, Mx = σx, ..., Miz = σxσy, Mi = σxσyσz. In computing
〈Mχ〉, we should note that for any choice of χ, Mχ will either commute or
anticommute with ρ+z. And of course Mχ commutes with 1̂. This allows us to
compute the expectation value easily. If Mχ anticommutes with σz, then the
expectation is zero:

〈M〉+z = (0.5(1 + σz)Mχ)0.5(1 + σz)
= (Mχ0.5(1− σz))0.5(1 + σz)
= 0

(2.24)

because (1 + σz) and (1− σz) annihilate each other. On the other hand, if Mχ

commutes, then the expectation is nonzero:

〈M〉+z = (0.5(1 + σz)Mχ)0.5(1 + σz)
= (Mχ0.5(1 + σz))0.5(1 + σz)
= Mχ0.5(1 + σz),

(2.25)

because 0.5(1 + σz) is idempotent.
This method of calculation is very useful and it is worth describing again

why it works. If an idempotent is written with unit multivectors, one can
always factor a unit multivector to the other side of the idempotent. This
will either leave the idempotent unaltered, or it will change the idempotent
to a different idempotent that will annihilate the original idempotent. This
behavior will be repeated when we later study the Dirac and more complicated
Clifford algebras. To calculate with prim-

itive idempotents, factor
unit multivectors around
the primitive idempotents,
which sometimes changes
the primitive idempotents.

Given the idempotent 0.5(1+σz), the Pauli unit multivectors that commute
with it, and therefore give a nonzero expectation value, are 1̂, σz, σxσy and
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σxσyσz. The other four Pauli unit multivectors will convert ρ+z to ρ−z which
will annihilate with the other ρ+z and therefore give an expectation value of
zero. Returning to the classification of the degrees of freedom of the Pauli unit
multivectors according to orientation, we see that the neutral and z oriented
unit multivectors give nonzero expectation values while the x and y oriented
unit multivectors give zero expectation values. Thus half the degrees of freedom
give a zero expectation value and the other half gives a nonzero expectation.
When we later study more complicated Clifford algebras we will find somewhat
more complicated behavior; in addition to different orientations giving zero
expectation, there is also the possibility of changing the “internal” quantum
states which will then annihilate.

A Hermitian operator can be written as a sum of real multiples of the scalarHermitian Pauli operators
include scalars and vec-
tors, but not pseudoscalar
and pseudovector.

and vector blades of the Pauli algebra. That is, the general Hermitian operator
H can be written as:

H = H11̂ +Hxσx +Hyσy +Hzσz, (2.26)

where Hχ are real numbers. An anti-Hermitian operator can be written simi-
larly as a sum of real multiples of psuedovectors and the psuedoscalar blades.

In the Pauli algebra, the pure density operators are of the form:

ρu = (1 + σu)/2 = (1 + uxσx + uyσy + uzσz)/2, (2.27)

where (ux, uy, uz) is a unit vector, and are therefore Hermitian. Consequently,
when we compute the expectation value of a pure density operator,

〈ρu〉A = ρA ρu ρA, (2.28)

the result will be a real number (i.e. a real multiple of ρA).
When a system is prepared in a state A, and we later measure it to see if itTransition probabili-

ties and the probability
postulate.

is in a state B, it is a fundamental postulate of quantum mechanics that the
“transition probability” will be given by the expectation value of ρB . That is,

P (A→ B) = |〈A|B〉|2,
= 〈A|B〉〈B|A〉,
= 〈A|ρB |A〉.

(2.29)

Transition probabilities are a very important type of expectation value and we
will be computing them often in this book.

2.3 Amplitudes and Feynman Diagram

In this section we will analyze a particularly simple sort of Feynman diagram,
one which begins and ends with states that can be defined in the Pauli algebra.
While these are very limited in type, they will see extensive use later in this
book in the context of the origin of mass. We will begin with the state I repre-
sented by the pure density operator ρI , and end with the state F represented
by the pure density operator ρF .
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Feynman devotes a section titled “Path Integral Formulation of the Density
Matrix” in his lecture notes [10] on statistical mechanics. We differ in our
presentation in that we are dealing with the internal degrees of freedom (i.e.
spin), while Feynman was dealing with the external degrees of freedom (i.e.
position or momentum). But the expansions are otherwise similar.

In the method of Feynman diagrams, one computes the probability of a
transition from an initial state I to a final state F by first computing the
“amplitude” of the transition as a sum over various paths, and then computing
the probability as the square of the absolute value of the amplitude. In the
case of the simple Feynman diagrams we are working with here we know that
the amplitude is simply 〈I|F 〉 which we will write as:

Amp(I → F ) = 〈I|F 〉 (spinor formalism). (2.30)

In converting this to the density operator formalism, we have several choices. Feynman amplitudes are
not to be complex num-
bers.

We could define geometric complex numbers by computing in the multiples of
the I, F or vacuum 0 primitive idempotents ρI , ρF or ρ0. However, Feyn-
man amplitudes require only the operations of addition and computation of a
magnitude, they do not require complex multiplication.

Let us consider what happens when we insert a new state between the initial
and final states in the Feynman method. Since the Feynman method requires
us to sum over all possible paths, we must also include the complement of the
state. We can write the interior parts of this calculation in pure density matrix
form. For example, if A is the state with spin +1/2 in the a direction:

Amp(I → F ) = 〈I|F 〉,
= 〈I|1̂|F 〉,
= 〈I|0.5(1 + σa)|F 〉+ 〈I|0.5(1− σa)|F 〉,
= 〈I||A〉〈A||F 〉+ 〈I||Ā〉〈Ā||F 〉,
= 〈I||A〉〈A||F 〉+ 〈I||Ā〉〈Ā||F 〉,
= 〈I|ρA|F 〉+ 〈I|ρ̄A|F 〉,

(2.31)

where we have introduced the notation ρ̄A to indicate the complement of the
pure density operator ρA.

This idea can be continued to give a sequence of pure density operators
between the initial bra and final ket. The various intermediate states are all
treated as pure density operators, only the initial and final states are in ket
form. This suggests that the natural way of writing an amplitude in pure
density operator form is to convert the initial and final objects to look the
same as the intermediate ones. In this manner, again inserting the state A and
its complement between initial and final state we have: Definition of amplitude in

density operator formal-
ism.Amp(I → F ) = ρI ρF ,

= ρI ρA ρF + ρI ρ̄A ρF .
(2.32)

Using this formalism will allow us to connect Feynman diagrams together with-
out having to distinguish between internal and external lines. But to justify
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this, we need to show that we can add these sorts of objects, and that we can
compute squared magnitudes of them.

For definitiveness, let I be spin +1/2 in the +z direction, and let F be spin
+1/2 in the +x direction. With Pauli spin matrices, the various objects are:

ρI =
(

1 0
0 0

)
,

ρF =
(

0.5 0.5
0.5 0.5

)
,

〈I| =
(

1 0
)
,

|F 〉 =
√

0.5
(

1
1

)
.

(2.33)

Suppose that we are considering a particular sequence of states that happens
to reduce to the matrix M = Mij . For the spinor method, we get an amplitude
of:

Amp(I →M → F ) =
(

1 0
)( M11 M12

M21 M22

)√
0.5
(

1
1

)
,

=
√

0.5(M11 +M21).
(2.34)

Replacing the spinors with pure density operators gives:

Amp(I →M → F ) =
(

1 0
0 0

)(
M11 M12

M21 M22

)(
0.5 0.5
0.5 0.5

)
,

= 0.5(M11 +M21)
(

1 0
1 0

)
.

(2.35)
Instead of getting a complex number, the amplitude is a more general operator,
a product of two primitive idempotents. Comparing Eq. (2.35) to Eq. (2.34), weAmplitudes are, in gen-

eral, products of primitive
idempotents.

see that summation of amplitudes will give analogous results. For example, if
to the above amplitude we add another amplitude that has an internal operator
of Nij , then the two methods will give results that are proportional to (M11 +
M21) + (N11 + N21). Therefore, to get a pure density operator formalism for
amplitudes, we need only define the equivalent of the squared magnitude.

To convert the amplitude into a squared magnitude, we can use the methods
of Sec. (2.2), that is, work with vacuum expectation values and use multiples
of ρ0, or work in expectation values using multiples of either ρI or ρF . For
example, let us compute the squared magnitude for the amplitude of Eq. (2.35).
In the traditional spinor formalism, the answer is the squared magnitude of
Eq. (2.34), that is 0.5|M11 +M21|2. We begin by multiplying the amplitude by
its complex conjugate transpose:

P (I → F ) = 0.5(M11 +M21)
(

1 0
1 0

)
0.5(M∗11 +M∗21)

(
1 1
0 0

)
= 0.25|M11 +M21|2

(
1 1
1 1

)
= 0.5|M11 +M21|2ρF .

(2.36)
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If we multiply on the left by the complex conjugate the result is a multiple of
the initial primitive idempotent:

P (I → F ) = 0.5(M∗11 +M∗21)
(

1 1
0 0

)
0.5(M11 +M21)

(
1 0
1 0

)
= 0.25|M11 +M21|2

(
2 0
0 0

)
= 0.5|M11 +M21|2ρI .

(2.37)

We can also define the squared magnitude using an arbitrarily chosen vacuum
state.

As before, these methods allow us to compute amplitudes without the need
for specifying a representation of the Pauli algebra. In the above, we have
used the Pauli spin matrices because of their familiarity. Let us now redo the
calculation in geometric form. The amplitude is:

Amp(I →M → F ) = 0.5(1 + σz)M0.5(1 + σx). (2.38)

We will compute the squared magnitude in terms of the initial idempotent,
0.5(1 + σz). Then the squared magnitude is:

P (I →M → F ) = 0.5(1 + σz)M0.5(1 + σx)0.5(1 + σx)M(1 + σz). (2.39)

To compute this, we need to commute M around the idempotents. Therefore,
we divide M into its orientations and write M = Mn + Mx + My + Mz and
compute:

P (I →M → F ) = 0.5(1 + σz)(Mn +Mx +My +Mz)0.5(1 + σx)
0.5(1 + σx)(M∗n +M∗x +M∗y +M∗z )0.5(1 + σz).

(2.40)
In our previous analysis of expectation values, we found that the x and y
orientations give zero expectation values. Therefore, to perform the above
computation we can multiply out the terms between 0.5(1+σz) and group terms
according to their orientations. Only the “n” and “z” orientations survive
giving:

0.5(Mn +Mz +Mx +My)(1 + σx)(M∗n +M∗x +M∗y +M∗z )
= 0.5(MnM

∗
n +MxM

∗
x +MyM

∗
y +MzM

∗
z ) “n”

+ 0.5(MnσxM
∗
x +MxσxM

∗
n +MyσxM

∗
z +MzσxM

∗
y ) “n”

+ 0.5(MnM
∗
z +MzM

∗
n +MyM

∗
x +MzM

∗
n) “z”

+ 0.5(MnσxM
∗
y +MxσxM

∗
z +MyσxM

∗
n +MzσxM

∗
x) “z”.

(2.41)

Since σz(1 + σz) = (1 + σz), we can turn the “z” terms into “n” form by
bringing in an extra factor of σz on the right:

= 0.5(MnM
∗
n +MxM

∗
x +MyM

∗
y +MzM

∗
z )

+ 0.5(MnσxM
∗
x +MxσxM

∗
n +MyσxM

∗
z +MzσxM

∗
y )

+ 0.5(MnM
∗
z +MzM

∗
n +MyM

∗
x +MxM

∗
y )σz

+ 0.5(MnσxM
∗
y +MxσxM

∗
z +MyσxM

∗
n +MzσxM

∗
x)σz.

(2.42)
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The above is all in the “n” orientation; the only degrees of freedom are 1̂ and
σxσyσz. Writing Mn = mn, Mx = mxσx, My = myσy, and Mz = mzσz
allows us to simplify. In computing the result, we need to keep in mind the
anticommutation relations so that, for instance, σxσzσy = −σxσyσz. The
result is:

= 0.5(mnm
∗
n +mxm

∗
x +mym

∗
y +mzm

∗
z +mnm

∗
x +mxm

∗
n − imym

∗
z

+imzm
∗
y +mnm

∗
z +mzm

∗
n − imym

∗
x + imxm

∗
y + imnm

∗
y +mxm

∗
z

−imym
∗
n +mzm

∗
x)

= 0.5(mn +mx − imy +mz)(m∗n +m∗x + im∗y +m∗z)
= 0.5|mn +mx − imy +mz|2

(2.43)
where “i” indicates multiplication by σxσyσz.

The use of σxσyσz as i in the above calculation suggests that we should use
it in defining complex multiples of elements of the Pauli algebra. For example,
let I be the initial state and F the final state in a Feynman. We insert the
state A between I and F as follows:

ρF ρAρI , (2.44)

and using the methods of this section we can treat these as complex numbers to
the extent that we can add them together and compute squared magnitudes.
But we can go a little farther than this, and we can write this object as a
complex multiple of ρF ρI as follows:

ρF ρAρI = (aR + aIσxσyσz)ρF ρI , (2.45)

where aR and aI are real numbers.
This is easiest to show using the Pauli spin matrices. Let us assume thatAmplitudes are complex

numbers times the product
of two primitive idempo-
tents.

ρF = 0.5(1 + σz) and that ρI = 0.5(1 + cos(θ)σz + sin(θ)σx) so that the angle
between the spin axes of I and F is θ. Let M be an arbitrary 2 × 2 matrix.
Then

ρFMρI =
(

1 0
0 0

)(
m11 m12

m21 m22

)
0.5
(

1 + cos(θ) sin(θ)
sin(θ) 1− cos(θ)

)
,

= 0.5
(
m11 m12

0 0

)(
1 + cos(θ) sin(θ)

sin(θ) 1− cos(θ)

)
,

= 0.5m11

(
1+cos(θ) sin(θ)

0 0

)
+ 0.5m12

(
sin(θ) 1−cos(θ)

0 0

)
= 0.5(m11 +m12(1− cos(θ))/ sin(θ))

(
1 + cos(θ) sin(θ)

0 0

)
.

(2.46)
since m11 and m12 are complex, the result is as desired. In the state vector for-
malism, amplitudes are also complex numbers, but they depend on the phases
chosen for the spinors. In the density operator formalism, there is no arbitraryComplex phases of den-

sity operator amplitudes
are uniquely defined.

complex phase and the complex phase of the amplitude defined here is not
arbitrary.
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2.4 Products of Density Operators

The calculation of Feynman diagram amplitudes using products of density
operators as discussed in the previous section is the primary subject of this
book. In this section, we derive some useful methods of reducing these sorts of
calculations.

The first thing to note is that if we wish to expand an amplitude by inserting
states between and initial and final state, there is no reason to do this if the
initial and final states annihilate. Such a transition has zero probability and
is not of interest. So we will assume that the initial and final states do not
annihilate.

In the Pauli algebra, the pure density operator states correspond to primi-
tive idempotents in various directions. Given three unit vectors, ~u, ~v, and ~w,
the corresponding pure density operator states are:

ρu = 0.5(1 + σu) = 0.5(1 + uxσx + uyσy + uzσz),
ρv = 0.5(1 + σv),
ρw = 0.5(1 + σw).

(2.47)

We will interpret the ρw as the initial state, ρu as the final state, and ρv as
the intermediate state that is inserted between them in a Feynman amplitude
calculation. Since antiparallel projection operators annihilate, under this as-
sumption, we suppose that ~u and ~w are not antiparallel.

In the previous section, we showed that the product of ρu, ρv and ρw can
be written as a “complex” multiple of the product of ρu and ρw. Let us write
this complex number as a magnitude and phase in the following fashion:

ρuρvρw =
√
Ruvw exp(iSuvw) ρuρw, (2.48)

where Ruvw and Suvw are real functions of the three vectors ~u, ~v, and ~w. The
factors of two are included for later convenience. Rewriting the above in spinor
form we have:

ρuρvρw = |u〉〈u|v〉〈v|w〉〈w|,
= 〈u|v〉〈v|w〉 |u〉〈w|,
= (〈u|v〉〈v|w〉/〈u|w〉) |u〉〈u|w〉〈w|,

(2.49)

and therefore √
Ruvw exp(iSuvw) = 〈u|v〉〈v|w〉/〈u|w〉. (2.50)

In the above, the left hand side is completely defined within the density matrix
formalism and therefore does not depend on choice of phase. The right hand
side is therefore invariant with respect to the arbitrary complex phases chosen
for the spinors; while the individual amplitudes depend on the choice of phase,
the above product does not.

Eq. (2.50) includes three spinor amplitudes; a typical one is 〈u|v〉. The
squared magnitude of each of these can be written as 0.5(1 + cos(θuv)) where
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θuv is the angle between ~u and ~v. Similarly for the other three amplitudes, and
this gives the formula for Ruvw as:

Ruvw = 0.5(1 + cos(θuv))(1 + cos(θvw))/(1 + cos(θuw)). (2.51)

It remains to find the equation for Suvw.
The three vectors ~u, ~v, and ~w are on the surface of the unit sphere and

define a spherical triangle, which we will call 4uvw. We next show that Suvw
is proportional to the oriented2 area of that spherical triangle. To see this,
pick a vector ~x inside the triangle 4uvw that is not opposite to any of the
three vectors (which would result in an inconvenient zero amplitude). Since
〈w|x〉〈x|w〉 = |〈w|x〉|2 is real, we can multiply by it without changing the phase.
Accordingly, we can write Suvw as:

Suvw = 2 arg(〈u|v〉〈v|〉/〈u|w〉),
= arg((〈u|x〉〈x|w〉/〈u|w〉)(〈u|v〉〈v|x〉/〈u|x〉)(〈v|w〉〈w|x〉/〈v|x〉)),
= Suxw + Suvx + Svwx,

(2.52)
where in the last equality we have used that arg(αβ) = arg(α) + arg(β). It
remains to find the constant of proportionality. Reversing two points on an
oriented spherical triangle defines a new spherical triangle that is complemen-
tary to the old one. The area of the triangle and its complement must add
to the total area of the unit sphere, 4π, but the triangle and its complement
must carry opposite phases. That is, since Suvw is defined as twice the complex
phase,

0.5 Suvw = −0.5 Suwv + 2nπ,
0.5 Suvw + 0.5 Suwv = 2nπ,

Area(4uvw) + Area(4uwv) = 4π,
(2.53)

where n is an integer, and the simplest solution is the one claimed:

Suvw = Area(4uvw), (2.54)

the verification of which we leave as an exercise for the reader.
In order to solidify this method of reducing products of projection operators,

we will now compute several products using Eq. (2.51) and Eq. (2.52). Let ρx,
ρy, and ρz be spin +1/2 in the x, y, and z directions. Then

ρx =
(

0.5 0.5
0.5 0.5

)
, ρy =

(
0.5 −0.5i

+0.5i 0.5

)
, ρz =

(
1 0
0 0

)
. (2.55)

For this example, θxy = θxz = θyz = π/2 so the 0.5(1 + cos(θ)) factors will
each give 0.5, and so Rxyz = 0.5(0.5)2/0.5 = 0.25. The spherical triangle is
an octant, and so its area, 4π/8 = π/2 is Sxyz. Multiplying out the matrices
gives:

ρxρyρz = 1+i
2

(
0.5 0
0.5 0

)
,

=
√

0.5eiπ/2ρxρz,
(2.56)

2Oriented here means that order matters, for example, Suwv = −Suvw.
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as claimed. Redoing the same problem in the geometric notation, ρx = 0.5(1 +
σx), etc., gives:

ρxρyρz = (0.5)3(1 + σx)(1 + σy)(1 + σz)
= 0.125((1 + σx)(1 + σz) + (1 + σx)σy(1 + σz))
= 0.125(1 + σx)(1 + σz)

+0.125(1 + σx)σxσyσz(1 + σz))
= 0.5(1 + σxσyσz)0.5(1 + σx)0.5(1 + σz)
= 0.5(1 + i)ρxρz,

(2.57)

gives the same answer without need to choose a representation.
Products of more than three projection operators can be reduced using

the above formula, provided one avoids a division by zero in Eq. (2.51), the
definition of Ruvw. Earlier we saw that products of three projection operators
that begin and end with the same projection operator are always real multiples
of that same projection operator. Products of four projection operators are, in
general, complex:

ρuρvρwρu =
√
Ruvw exp(iSuvw) ρuρwρu,

=
√
RuvwRuwu exp(iSuvw) exp(iSuwu)ρuρu,

=
√
RuvwRuwu exp(iSuvw)ρu,

(2.58)

and the phase, Suvw/2, is the same as for the product of the first three projec-
tion operators, ρuρvρw. In addition, the product RuvwRuwu simplifies:

RuvwRuwu = 0.5 (1+cos(θuv))(1+cos(θvw))
/ (1 + cos(θuw))

×0.5 (1+cos(θuw))(1+cos(θwu))
/ (1 + cos(θuu))

= 0.5(1 + cos(θuv))0.5(1 + cos(θvw))0.5(1 + cos(θwu)),
(2.59)

to the product of three 0.5(1 + cos(θ)) factors, as expected. This product is
unchanged when u, v, and w are pairwise swapped. On the other hand, since
the area is oriented, swapping any two of u, v, and w negates Suvw:

Suvw = Svwu = Swuv = −Suwv = −Svuw = −Swvu. (2.60)

If we interpret the product ρuρvρwρu as a Feynman amplitude, then physi-
cally, the path that the particle takes is to visit the states in the order u, w, v,
and then back to u. When we swap v and w, we reverse the sequence of states.
As we saw above, this causes the phase to be negated. In other words, the
amplitude of the reversed sequence is the complex conjugate of the amplitude
of the forward sequence. It is left as an exercise for the reader to show that this
is generally true for more complicated paths. Taking the continuous limit, we
have that paths that begin and end on the same point take a complex phase
equal to half the area of the region encircled (possibly circled multiple times).

One last comment on products of four projection operators. In the spinor
formulation, each of the legs corresponds to a complex number, and the final
amplitude is the product of the three complex numbers. As noted before,
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Figure 2.1: Two adjoining spherical triangles on the unit sphere. Suvw
is additive, that is, SABCD = SABC + SABD, and therefore the complex
phase of a series of projection operators can be determined by the spherical

area they encompass.

the actual complex phase for each leg will depend on the choices of arbitrary
complex phases for the spinors, but the overall product will not depend on
these choices.

Within the spinor formalism, it makes sense to attribute a phase contri-
bution to each leg, that is, Suvw = Suv + Svw + Swu. This is reminiscent of
Eq. (2.52) which gives Suvw in terms of the three phases Suxw, Suvx, Svwx. To
make the equivalence more exact, we can choose the point x to be the vacuum,
that is the constant projection operator ρ0. Each of the three sides of the
spherical triangle gives a contribution to Suvw, that is,

Suvw = Su0w + Suv0 + Svw0. (2.61)

Since Su0w = −Suw0 = +Swu0, we can bring the vacuum to the right most
position in the indices and the result is a symmetric form for the complex
phase:

Suvw = Swu0 + Suv0 + Svw0. (2.62)

The fact that Suw0 = −Swu0 suggests that we consider the legs of the spheri-
cal triangle as ordered paths. That is, they can be traversed in either of two
directions and the complex phase they contribute will take a sign depending
on which direction is taken. This gives a natural way of interpreting the fact
that Suvw is proportional to the area. See Fig. (2.1). Consider a spherical
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quadrilateral, ABCD. We can split the region into two spherical triangles by
adding line AC. Letting the two triangles be traversed in the same direction
starting at A, the left AC is traversed in opposite directions by the two trian-
gles. Therefore the contribution to the complex phase by the leg AC is canceled
and the complex phase of ABCD is the sum of the complex phases of the two
triangles.





Chapter 3

Primitive Idempotents

Then I stripped them, scalp from skull, and my hunting dogs fed full,
And their teeth I threaded neatly on a thong;
And I wiped my mouth and said, “It is well that they are dead,
For I know my work is right and theirs was wrong.”

But my Totem saw the shame; from his ridgepole shrine he came,
And he told me in a vision of the night: –
“There are nine and sixty ways of constructing tribal lays,
And every single one of them is right!”

T his chapter will discuss primitive idempotents for Clifford algebras in
more depth than the Pauli algebra can provide. We will also cover idem-

potents in general, and “roots of unity”, the elements that square to 1̂. Of
particular interest are groups of idempotents that commute. In quantum me-
chanics, these correspond to measurements that can be made in any order, and
are therefore “compatible”. Also of interest are groups of commuting roots of
unity; these we will use to define the quantum numbers of states.

3.1 The Pauli Algebra Idempotents

An “idempotent” is an element of an algebra that is unchanged when squared:

ρ2 = ρ. (3.1)

The above is a simple equation, but it is a nonlinear equation, and as such it
is not necessarily very easy to solve.

A “primitive idempotent” is a nonzero idempotent which cannot be written
as the sum of two nonzero idempotents. This definition can be confusing to
the student. It seems circular. Let us apply it to several simple algebras and
see how to understand it on an intuitive and physical level.

For the complex numbers, the solutions to Eq. (3.1), that is, the idempo- Complex numbers have
only one primitive idem-
potent: 1.35
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tents, are 0 and 1. Of these, only 1 is nonzero. The only possible sum of two
nonzero idempotents is 1+1 = 2, so 1 is a primitive idempotent of the complex
(or real) numbers.

For the complex 2x2 matrices, the idempotents are obtained by solving:(
a c
b d

)
=

(
a c
b d

)2

=
(

a2 + bc c(a+ d)
b(a+ d) d2 + bc

) (3.2)

There are four resulting equations:

a = a2 + bc,
d = d2 + bc,
b = b(a+ d),
c = c(a+ d).

(3.3)

If a + d 6= 1, then, by the last two of the above, b = c = 0. The other two
equations then give a2 = a and d2 = d. There are four solutions of this sort,
according as a and d are independently 0 or 1. Two of these have a + d = 1,
the other two are: (

0 0
0 0

)
,

(
1 0
0 1

)
, (3.4)

the 0 and 1̂ of the algebra.
The solutions with a + d = 1, are more interesting – they are simply the

primitive idempotents of the Pauli algebra – but they are more difficult to find.
To solve these equations, let us rewrite a, b, c, and d in geometric form:(

a c
b d

)
=
(

a1 + az ax − iay
ax + iay a1 − az

)
, (3.5)

where a1, ax, ay, and az are complex numbers. Then a+ d = (a1 + az) + (a1−
az) = 2a1 = 1, so a1 = 0.5.

In solving ρ2 = ρ for the case a+d = 1, we can use either matrix arithmetic
and square the right hand side of Eq. (3.5), or we can do the calculation directly
in geometric notation:

0.5 + axσx + ayσy + azσz = (0.5 + axσx + ayσy + azσz)2

= (0.25 + a2
x + a2

y + a2
z)

+axσx + ayσy + azσz,
(3.6)

where the remaining terms cancel by anticommutation. The solution is a2
x +

a2
y + a2

z = 0.25, and factoring 0.5 out gives the general solution as:

ρ = 0.5(1̂ + uxσx + uyσy + uzσz), (3.7)

where u2
x + u2

y + u2
z = 1. The full set of nonzero idempotents are the above,

plus 1̂. These elements have scalar parts of 0.5 or 1. If we add any two of
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these idempotents together, the sum will have a scalar part of at least 1, so the
elements with scalar part 0.5, that is, the idempotents given in Eq. (3.7), are
all primitive idempotents. Since 1̂ = 0.5(1 + σz) + 0.5(1− σz), we have that 1̂
is not primitive.

If ux, uy, uz are all real, then the primitive idempotent defined in Eq. (3.7)
is one of the pure density operators of the Pauli algebra discussed in the first
chapter. If one or more of them are complex, then we still have a primitive
idempotent, but it is no longer Hermitian. For example, ux = 2.4i, uy = 0,
uz = 2.6 gives the following primitive idempotent: Pure density operators of

spin−1/2 are Hermitian
primitive idempotents.0.5 + 1.2iσx + 1.3σz =

(
1.8 1.2i
1.2i −0.8

)
(3.8)

This completes the solution of the primitive idempotents of the 2× 2 complex
matrices, and also the Pauli algebra. It should be clear that the geometric
notation is very useful in solving the system of equations generated by ρ2 = ρ.

3.2 Commuting Roots of Unity

All of the primitive idempotents of the Pauli algebra have the same scalar part,
0.5; they differ in the remaining part. This variable part squares to one:

ιu = uxσx + uyσy + uzσz,

ι2u = u2
x + u2

y + u2
z = 1̂.

(3.9)

We will call elements of a Clifford algebra or matrix algebra that square to 1̂,
“roots of unity”. That they are square roots is assumed.

The equations can be reversed. Suppose that ι is not a scalar and that
ι2 = 1̂. Then 0.5(1± ι) is an idempotent:

(0.5(1̂± ι))2 = 0.25(1̂± 2ι+ ι2)
= 0.25(1̂± 2ι+ 1̂)
= 0.5(1̂± ι).

(3.10)

In the first chapter, we associated a product of two different primitive idempo-
tents of the Pauli algebra with the complex numbers of a Feynman amplitude.
We saw that these products do not commute, that is, ρaρb 6= ρbρa. This is a
general property of primitive idempotents in matrix or Clifford algebras, that
is, they either are identical, annihilate, or they don’t commute.

But the products of distinct idempotents that are neither primitive nor
equal to 1̂, even in matrix and Clifford algebras, need not be zero. For example,
the following two 3×3 matrices are idempotent and commute, but their product
is neither zero nor either of the two: 1 0 0

0 1 0
0 0 0

 0 0 0
0 1 0
0 0 1

 =

 0 0 0
0 1 0
0 0 0

 . (3.11)
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Note that the product is also idempotent. This is true in general: if ρ1 and
ρ2 commute and are idempotent, then ρ1ρ2 is also idempotent and commutes
with ρ1 and ρ2:

(ρ1ρ2)2 = = ρ2
1 ρ

2
2 = ρ1ρ2,

ρ1(ρ1ρ2) = (ρ1ρ2)ρ1,
ρ2(ρ1ρ2) = (ρ1ρ2)ρ2.

(3.12)

This fact generalizes. A set of commuting idempotents generate a group underProducts of commuting
idempotents commute. multiplication that consists entirely of commuting idempotents.

Let ρ1 = 0.5(1 + ι1) and ρ2 = 0.5(1 + ι2) be two commuting idempotents.
Then ι1 and ι2 commute:

ρ1 ρ2 = ρ2 ρ1,
0.5(1 + ι1)0.5(1 + ι2) = 0.5(1 + ι2)0.5(1 + ι1),

1 + ι1 + ι2 + ι1ι2 = 1 + ι1 + ι2 + ι2ι1,
ι1ι2 = ι2ι1.

(3.13)

The above equations can be reversed: If ι1 and ι2 commute and square to +1,
then ρ1 = 0.5(1 + ι1) and ρ2 = 0.5(1 + ι2) are commuting idempotents. Thus
the sets of commuting roots of unity match the sets of commuting idempotents.

An idempotent is primitive only when it cannot be written as the sum of
two other non zero idempotents. Let’s suppose that an idempotent ρ is not
primitive so we can write:

ρ = ρ1 + ρ2,
ρ2 = ρ2

1 + ρ2
2 + ρ1ρ2 + ρ2ρ1,

ρ = ρ1 + ρ2 + ρ1ρ2 + ρ2ρ1, and so
0 = ρ1ρ2 + ρ2ρ1.

(3.14)

This says that ρ1 and ρ2 anticommute. Let us reduce the product ρ2ρ1ρ2 using
anticommutation two different ways:

ρ2ρ1ρ2 = (ρ2ρ1)ρ2 = −ρ1ρ2ρ2 = −ρ1ρ2,
= ρ2(ρ1ρ2) = −ρ2ρ2ρ1 = −ρ2ρ1.

(3.15)

So −ρ2ρ1ρ2 = ρ1ρ2 = ρ2ρ1, and we have that ρ1 and ρ2 commute. But sinceTo prove an idempotent
is not primitive, look for
it among the sums of the
idempotents that commute
with it.

they commute with each other, they also must commute with their sum, ρ.
This suggests that a way of finding primitive idempotents is to look at sets of
commuting idempotents and eliminate all the ones that can be written as sums
of the others. This is a finite problem.

We can make this problem into a “lattice”. Given a set of commuting
idempotents, define an inequality as follows:

ρL < ρG iff (ρG − ρL) is a non zero idempotent. (3.16)

Equality is defined as usual. This definition is a “partial ordering”, which
means that it acts like the usual inequality does on the real numbers except
that some elements cannot be compared.
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0

1̂

ρz ρ̄z

Figure 3.1: Drawing of the lattice of a complete set of commuting idem-
potents of the Pauli algebra, see text, Eq. (3.17).

As an example of this partial ordering, consider the set of four commuting
idempotents of the Pauli algebra, 0, ρz = 0.5(1 + σz), ρ̄z = 0.5(1− σz), and 1̂.
These elements satisfy the following relationships:

0 ρz ρ̄z 1̂
0 = < < <
ρz > = <
ρ̄z > = <

1̂ > > > =

(3.17)

Any two elements can be compared except for ρz and ρ̄z. To make this into
a lattice, put 1̂ at the top, 0 at the bottom, and the rest of the elements in
between. If ρL < ρG, then arrange ρL to be closer to 0 than ρG. Add a
line between two elements if they are ordered, and there is no other element
between them. See Fig. (3.1). In general, if there is a relation between two
elements, then there is a way of climbing from the lower one to the upper
one. The primitive idempotents are the elements closest to the bottom. In
quantum mechanics theory, two measurements are compatible (i.e. commute)
if their idempotents are related by an inequality. For this reason, the lattice is
sometimes called the “lattice of propositions” in the literature.
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3.3 3× 3 Matrices

We now consider the problem of the primitive idempotents of 3 × 3 matrices.
As before, we will make these from commuting roots of unity. The diagonal
matrices commute, so let’s consider the diagonal roots of unity: a1 0 0

0 a2 0
0 0 a3

2

=

 1 0 0
0 1 0
0 0 1

 (3.18)

that is,
a1 = ±1,
a2 = ±1,
a3 = ±1.

(3.19)

The ±1 in the above three equations are independent; there are thus 23 = 8
roots of unity. When one takes all three right hand sides as +1, the root of
unity is just 1̂. We can label these roots by a suffix that gives the signs. The
eight roots are then:

ι−−− =

 −1 0 0
0 −1 0
0 0 −1

 ,

ι−−+ =

 −1 0 0
0 −1 0
0 0 +1

 ,

... ...

ι+++ = 1̂.

(3.20)

Each of these eight roots of unity defines an idempotent (which may or may not
be primitive) by ρχ = 0.5(1+ιχ). The +1s on the diagonal of ιχ produce +1s on
the diagonal of ρχ, but the −1s become 0s. There are two idempotents that are
particularly simple: ρ+++ = 1̂ and ρ−−− = 0. The remaining six idempotents
have mixtures of 0s and 1s on their diagonals in various combinations.

The partial ordering of the diagonal idempotents is as follows:

0 ρ−−+ ρ−+− ρ+−− ρ++− ρ+−+ ρ−++ 1̂
0 = ρ−−− = < < < < < < <

ρ−−+ > = < < <
ρ−+− > = < < <
ρ+−− > = < < <
ρ++− > > > = <
ρ+−+ > > > = <
ρ−++ > > > = <

1̂ = ρ+++ > > > > > > > =

(3.21)

These can be arranged into a lattice, see Fig. (3.2). It may be intuitively
obvious that the idempotents are arranged according to the binomial theorem.
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0 = ρ−−−

ρ−−+ ρ−+− ρ+−−

ρ++− ρ+−+ ρ−++

1̂ = ρ+++

Figure 3.2: Drawing of the lattice of a complete set of commuting idempo-
tents of the algebra of 3× 3 matrices, see text, Eq. (3.21). The primitive

idempotents are ρ−−+, ρ−+−, and ρ+−−.

That is, with N × N matrices there will be N + 1 rows, and the number of
idempotents in the nth row will be the coefficient of xn in the expansion of
the polynomial (1 + x)N . In the case of Fig. (3.2), N = 3 and the four rows
of the lattice have 3!/(n!(3 − n)! = 1, 3, 3, and 1 element each. We will see
this pattern in the structure of the elementary particles in that there is one
electron, three anti-up quarks, three down quarks, and one neutrino.

We have found the idempotent structure of the diagonal 3 × 3 matrices;
what does this tell us about the structure of more general 3× 3 matrices? Let
S be any invertible matrix. Then the following transformation:

A→ SAS−1. (3.22)

preserves multiplication:

(SAS−1)(SBS−1) = S(AB)S−1, (3.23)

and therefore preserves idempotency and roots of unity, and preserves addition:

SAS−1 + SBS−1 = S(A+B)S−1, (3.24)

and therefore preserves primitive idempotency and the partial ordering. We
will leave it as an exercise for the reader to prove that the relation is general;
that is, any set of complete primitive idempotents in 3×3 matrices generates an
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idempotency partial ordering that is equivalent to that of the group of diagonal
matrices.1

Quarks come in three “color” states which we will label as R, G, and B
which stand for red, green and blue. Color is completely symmetric under
rotation; that is, if we make the replacement:

R → G′

G → B′

B → R′
(3.25)

we expect that our physics will remain the same. The above is an even permu-
tation on the colors. We will not require that color symmetry be preserved on
odd permutations such as R→ R′, G→ B′, B → G′.

Suppose there is a process that can take a red particle of type I and convert
it to a red particle of type F (which stand for initial and final states), and this
process can be modeled with an amplitude of α. By color symmetry, we expect
the process to use the same amplitude when the initial state and final states
are both green, or when they are both blue. This is needed in order to preserve
the above symmetry.

The amplitude α need not be at all similar to the amplitude for the process
that takes a red particle in the initial state I and turns it into a green particle
in the final state F . Let us suppose that the amplitude β applies to such an
interaction. By color symmetry, β must also apply to the process which takes
a green particle in the initial state and produces a blue particle. Similarly for a
process that takes a blue particle in the initial state and produces a red particle
in the final state. Finally, let an amplitude of γ apply to the three remaining
conversions. We have defined 9 amplitudes. They can be arranged in a 3 × 3
table labeled horizontally and vertically by the particle types:

IR IG IB
FR α γ β
FG β α γ
FB γ β α

(3.26)

In the above table, initial states run along the column and final states run along
the rows. With this we can easily read off the results when a particle is in a
given initial state. For example, if the particle begins in the green state, then
the middle column applies, and the process will result in a final red particle
with amplitude γ, a green particle with amplitude α, and a blue particle with
amplitude β.

Suppose we had a particle that was initially in some superposition of color
and we were representing it with a vector with R, G and B components:

|I〉 =

 IR
IG
IB

 . (3.27)

1The author figures he could prove this but only inelegantly. If you happen to know how
to do it in an elegant fashion, please send me a line at carl@brannenworks.com .
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To figure out how this particle is modified by our process, we have to sum the
amplitudes for the various possibilities, and add them together. For example,
what is the final amplitude for the blue state? There are three contributing
processes, IR → FB , IG → FB , and IB → FB . The amplitudes for these three
processes are γ, β, and α, respectively. The incoming vector has IR, IG, and
IB components, so the total final blue component is:

FB = γIR + βIG + αIB . (3.28)

This is just matrix multiplication. Therefore we rewrite our table of amplitudes Circulant matrices model
color processes.as a 3× 3 matrix:

M =

 α γ β
β α γ
γ β α

 . (3.29)

and write |F 〉 = M |I〉. The matrix in the above equation is a “circulant”
3×3 matrix. Circulant matrices have the convenient properties that sums and
products of circulant matrices are also circulant – they form a subalgebra.

The philosophy of the state vector formalism is that the fundamental ob- States and operators are
the same thing.jects in quantum mechanics are states, and these states can be separated, in

the above, into initial and final states. This is in contrast to the philosophy
of the density operator formalism which treats the density operators as the
fundamental objects which share the same algebra as the operators on those
objects. This goes both ways. In addition to treating our states as operators,
we can also treat our operators as states. This is not at all a trivial extension
and we will discuss it in much greater detail in later chapters.

For the moment, let us find the idempotent structure of the circulant 3× 3
matrices. Accordingly, suppose that the operator M of Eq. (3.29) is a density
operator, and is therefore idempotent: α γ β

β α γ
γ β α

2

=

 α γ β
β α γ
γ β α

 . (3.30)

This gives three complex equations in three complex unknowns:

α = α2 + 2βγ,
β = γ2 + 2αβ,
γ = β2 + 2αγ.

(3.31)

Adding all three of the above gives:

α+ β + γ = (α+ β + γ)2, (3.32)

and therefore α+β+γ = 0 or = 1. For any algebra, if ρ is an idempotent, then
so is 1 − ρ. Translating this into circulant form, this means that if (α, β, γ)
gives an idempotent, then so does (1−α,−β,−γ). Thus we need only consider
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values of α, β, and γ that satisfy α+ β+ γ = 0; we can get the other solutions
by computing 1− ρ. Accordingly, we assume that

α = −(β + γ). (3.33)

Multiplying the last two equations of Eq. (3.31) by γ and β, respectively,
and subtracting gives:

γ3 = β3. (3.34)

The complex cubed root of one, e2iπ/3, will appear over and over in regard to
circulant matrices. Let us have pity on both author and reader and abbreviate
this number as ν:

ν = e+2iπ/3 = −0.5 + i
√

0.75,
ν∗ = e−2iπ/3 = −0.5− i

√
0.75.

(3.35)

With the ν notation, we can write γ in terms of β as:

γ = β νk. (3.36)

We can substitute the above equation and Eq. (3.33) into the second equation
of Eq. (3.31) to get the following equation for β:

β = β2 ν−k + 2(−β − βνk)β, (3.37)

which is solved by either β = 0 or

β = νk/(1− 2ν−k − 2νk). (3.38)

If β = 0, then γ = 0 and α = 0. Thus we have a complete set of solutions to
Eq. (3.31) subject to α+β+γ = 0. Adding back in the α+β+γ = 1 solutions
we have the complete solution set as:

α β γ
0 0 0

1/3 1/3 1/3
1/3 ν/3 +ν∗/3
1/3 ν∗/3 +ν/3
2/3 −ν/3 −ν∗/3
2/3 −ν∗/3 −ν/3
2/3 −1/3 −1/3
1 0 0

(3.39)

There are eight solutions. If we write them out in matrix form so that we canCirculant 3 × 3 matrices
have the same lattice as
3× 3 diagonal matrices.

perform addition on them, we will see that they define a partial ordering of
idempotents that is identical to the one we computed for the diagonal 3 × 3
matrices,see Fig. (3.2). In fact, the above table is organized in the same order
as in Eq. (3.21). The reader is invited to derive a transformation S that
diagonalizes the circulant matrices; that is, defines a translation of the form
χ→ SχS−1 that takes the diagonal idempotents to the circulant idempotents.
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If a set of matrices commute, then they share a set of eigenvectors. This
is the case for any set of commuting idempotents, so it certainly applies to
both of our 3 × 3 examples. But circulant matrices in general share common
eigenvectors. No matter the values of α, β and γ, the 3× 3 circulant matrices
have three eigenvectors that can be written as: 1

1
1

 ,

 1
ν
ν∗

 ,

 1
ν∗

ν

 . (3.40)

Since all circulant matrices share the same eigenvectors, the corresponding
eigenvalues can be used to classify the circulant matrices. For the eight idem-
potents defined in Eq. (3.21), the eigenvalues are as follows:

α β γ

 1
1
1

  1
ν∗

ν

  1
ν
ν∗


0 0 0 0 0 0

1/3 1/3 1/3 1 0 0
1/3 ν/3 +ν∗/3 0 1 0
1/3 ν∗/3 +ν/3 0 0 1
2/3 −ν/3 −ν∗/3 1 0 1
2/3 −ν∗/3 −ν/3 1 1 0
2/3 −1/3 −1/3 0 1 1
1 0 0 1 1 1

(3.41)

This is another way of writing the structure of the lattice of the circulant
matrices.





Chapter 4

Representations

The tale is as old as the Eden Tree—and new as the new-cut tooth—
For each man knows ere his lip-thatch grows he is master of Art and Truth;
And each man hears as the twilight nears, to the beat of his dying heart,
The Devil drum on the darkened pane: “You did it, but was it Art?”

S ince this book is describing a geometric formulation of quantum mechan-
ics, it is not strictly necessary for us to delve into the subject of represen-

tations of Clifford algebras. However, we are very much concerned with the
elementary particles, and it turns out that there is a very strong connection
between elementary particles and representations.

Accordingly, we will now turn to the task of defining representations from
a particle point of view. In doing this, we will find that there are more elegant
ways of describing a representation than are typically seen in the literature.

4.1 Clifford Algebras

The number of unit multivectors in a real Clifford algebra with M vectors is
2M as each vector as each unit multivector can either have zero or one copies
of a given vector. Each of these unit multivectors is a degree of freedom for the
Clifford algebra, so if the Clifford algebra is real there will be 2M real degrees of
freedom in the algebra, and if the Clifford algebra is complex there will be 2M

complex degrees of freedom or twice that number of real degrees of freedom.
A real N ×N matrix algebra has N2 real degrees of freedom and a complex

N × N matrix algebra has 2N2 real degrees of freedom. Consequently, in
making a faithful1 representation of a Clifford algebra out of matrices, we will
choose real or complex matrices according as the number of vectors, M , is even

1Faithful here means 1 to 1 and onto.

47
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or odd:
Clifford Algebra M is even M is odd
real 2(M/2) real matrices 2(M−1)/2 complex
complex 2(M/2) complex 2(M+1)/2 real matrices

(4.1)

For example, in the first chapter we treated the Pauli algebra as a real Clifford
algebra with 3 vectors, σx, σy and σz; so M = 3. This is an odd number of
vectors and a real Clifford algebra, so taking the upper right entry in Eq. (4.1),
the matrix representation uses complex matrices of size 2(3−1)/2 = 2. Sure
enough the Pauli spin matrices are 2× 2 complex matrices. The Dirac algebra
is usually treated as a complex Clifford algebra with 4 vectors, γ0, γ1, γ2,
and γ3, so M = 4. Examining the lower left entry in Eq. (4.1), the matrix
representation uses complex matrices of size 2(4/2) = 4. Sure enough the Dirac
gamma matrices are 4× 4 complex matrices.

The next least complicated matrix algebra after the 3 × 3 matricesare the
4 × 4 matrices. Four is a power of two, and so we can give these matrices
a geometric interpretation by considering them as a representation of a Clif-
ford algebra, the Dirac algebra. Physicists are more used to working with
representations of the Dirac algebra rather than the algebra itself and the rep-
resentations are called the “Dirac gamma matrices.”

The Dirac gamma matrices are usually designated as γ0, γ1, γ2, and γ3.
These are associated with the four dimensions of space-time, respectively, t, x,
y, and z. The numeric designation is convenient for the summation convention.
This is particularly convenient when considering the Dirac gradient operator,
γµ∂µ, which is explicitly covariant. This book is mostly concerned with the
internal states of particles; for this we will need neither covariance nor that
much use of the Dirac operator. On the other hand, we are very concerned
with the geometric meaning of quantum mechanics and we will be doing a lot
of algebra with these objects.

As a geometric improvement on the usual Dirac notation, we can replace
the numbers 0−3 by letters corresponding to the given direction in the manner
of the Pauli algebra. For example instead of γ3 we could write γz. The Dirac
algebra would then be distinguished from the Pauli algebra by the use of γ
instead of σ. But from the point of view of Clifford algebra, the designation
of the vector should be sufficient. That is, it is the vectors that generate and
define the Clifford algebra; the Clifford algebra does not define the vectors.

Accordingly, we will use a notation that abbreviates the usual gamma ma-Hat notation: x̂, ŷ, ẑ,
and t̂ are an abbreviation
for the basis vectors of the
Dirac algebra, γ0, γ1, γ2,
and γ3.

trix notation and covers the Pauli algebra too:

Pauli Dirac Clifford
× γ0 t̂
σx γ1 x̂
σy γ2 ŷ
σz γ3 ẑ

(4.2)

The reader who takes up this notation will find that it speeds up work consid-
erably. When we need to distinguish between coordinates and Clifford operator
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elements, the “hat” will distinguish the Clifford algebra unit vectors. In writing
Clifford unit multivectors, we can simply abut the vectors as in x̂ŷ, or better,
we can draw a single hat over the product as in x̂y. If we do draw them with
a single hat, we will arrange the elements in a standard order. 2

In general, an element of an algebra is a sum of scalar multiples of its unit
multivectors. For example, any element of the Pauli algebra can be written in
the form:

α11̂ + αxx̂+ αy ŷ + ...+ αxyzx̂yz, (4.3)

where the αχ are scalars, that is, real numbers. Because the scalars are taken
to be real numbers, the Pauli algebra is a real algebra.

We can also suppose that the scalars are complex numbers; we then call the Complex algebras versus
real algebrasalgebra a “complex algebra”, or an “algebra over the complex numbers”. In

the first chapter we showed that we could think of the pseudoscalar element of
the Pauli algebra, x̂yz, as the imaginary unit of the complex numbers. In doing
this we were making a bit of a confusion of the notation because we would be
writing i1̂ = i, and confusing a scalar with the unit operator times that scalar.
In order to back away a bit from this confusion, we will extend our hats over
the imaginary unit where appropriate. That is, when i is geometric we will
write î instead of i, and îxy instead of ix̂y.

Many people working in Geometric algebra try to replace all imaginary
numbers from their calculations other than the geometric ones. This makes
sense from a physical perspective. However, in solving equations in mathe-
matics, imaginary numbers can be very useful, and we can never know for
sure that the objects we discuss in physics are mathematical conveniences that
might have imaginary numbers present, or physical objects that must be built
from real numbers only. For example, imaginary numbers can appear naturally
in Fourier transforms. Our notation will allow these sorts of calculations to go
forward without more confusion than is inevitable. In such a situation, it is
possible to have two imaginary units, both squaring to −1 and both commuting
with the entire algebra.

In the Pauli algebra, the element x̂yz could be thought of as an imaginary
unit because it squares to −1 and commutes with all elements in the algebra.
Under what conditions can an element commute with the entire algebra?

Let χ̂ be a unit multivector that we wish to test to see if it commutes with
the whole algebra. Since the algebra is made from products of vectors, it is
necessary and sufficient that χ̂ commute with all the vectors. Suppose that χ̂
is a product of m vectors and the algebra is generated by N vectors.

If χ̂ is not a scalar then 1 < m and we can pick a vector v̂ that is part
of χ̂. In commuting v̂ with χ̂, we will perform m commutations. In m − 1 of
these, the vectors being commuted will be different from v̂ and a minus sign
will appear because Clifford vectors anticommute. In 1 of these, we will be
commuting v̂ with itself and no minus sign will appear. Therefore for χ̂ to
commute with v̂, we must have that m− 1 is even.

2Or send author a nasty note: carl@brannenworks.com .
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If χ̂ is not the pseudoscalar, that is, if it is not the product of all the
vectors, then m < N and we can pick a vector v̂ that is not in the product
that makes up χ̂. In this case, our commutation will be performed with m
anticommutations and for v̂ to commute with χ̂ we must have that m is even.
But m and m − 1 cannot both be even. Therefore any element of a Clifford
algebra that commutes with everything in the algebra must be either a scalar
or a pseudoscalar.

The scalars always commute with the entire algebra. But the pseudoscalar
may or may not. In commuting a vector v with χ̂, there will be m = N − 1
anticommutations and one commutation. Therefore the pseudoscalar will com-
mute with the algebra if the algebra has an odd number of basis vectors. And if
there is an even number of basis vectors, then the pseudoscalar anticommutes
with the basis vectors (and commutes with even products of basis vectors).

To have a geometric imaginary unit, the unit pseudoscalar must, in addi-
tion to commuting with the rest of the algebra, also square to −1. This will
happen in some Clifford algebras and not in others depending on the signature
and the number of basis vectors. First consider the Clifford algebras of posi-
tive signature. It can be shown that the unit pseudoscalar in such a Clifford
algebra will have positive signature if and only if the number of basis vectors is
equivalent to 0 or 1 modulo 4. Example: the Pauli algebra has 3 basis vectors.
This is not equivalent to 0 or 1 modulo 4, so the unit pseudoscalar of the Pauli
algebra squares to −1: that is, x̂yz2 = −1.

If a Clifford algebra has an odd number of basis vectors with negative
signature, then the signature of the pseudoscalar of that Clifford algebra will
be negated with respect to the pseudoscalar of a Clifford algebra of purely
positive signature. Example: the Dirac algebra has 4 basis vectors. Four is
equivalent to 0 modulo 4 so the unit pseudoscalar of the purely positive Clifford
algebra with four vectors will have a positive signature. But the Dirac algebra
has an odd number (i.e. one: t̂ ) of basis vectors that have negative signature.
So the pseudoscalar of the Dirac algebra instead squares to −1: that is, x̂yzt

2

= −1.
The same rule that tells whether the unit pseudoscalar squares to +1 or −1

tells whether any unit multivector of a Clifford algebra squares to ±1. After
a certain amount of use, the reader will find that the rules for determining
whether the square of a unit multivector is +1 or −1 become intuitive and
automatic. Until that time, photocopying Table (4.1) and keeping it handy
may assist.

Two Clifford unit multivectors will either commute or anticommute. To
find out which, you can anticommute the vectors they are made of but there
is an easier way. First of all, in determining whether they commute or anti-
commute we can start from the assumption that their vectors are ordered in
any particular order, so long as we are consistent. Let’s begin with the two
multivectors a and b written as follows:

a = (a1a2...aj)(s1s2...sl),
b = (b1b2...bk)(s1s2...sl),

(4.4)
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Table 4.1: Signs of squares of Clifford algebra MVs with n+ positive vectors
and n− negative vectors.

n+

0 1 2 3 4 5 6 7
0 + + − − + + − −
1 − + + − − + + −
2 − − + + − − + +
3 + − − + + − − +

n− 4 + + − − + + − −
5 − + + − − + + −
6 − − + + − − + +
7 + − − + + − − +

where the {sn} are l shared vectors, the {an} are j vectors that only a has,
and the {bn} are k vectors that only b has. Then compute:

ab = (a1a2...aj)(s1s2...sl)(b1b2...bk)(s1s2...sl),
= (−1)kl(a1a2...aj)(b1b2...bk)(s1s2...sl)(s1s2...sl),
= (−1)kl+jk(b1b2...bk)(a1a2...aj)(s1s2...sl)(s1s2...sl),
= (−1)kl+jk+jl(b1b2...bk)(s1s2...sl)(a1a2...aj)(s1s2...sl),
= (−1)kl+jk+jl ba.

(4.5)

Therefore the two multivectors commute if kl+jk+jl is even and anticommute Multivectors commutation
rule.if it is odd. So the rule is this: Count the number of vectors that the two unit

multivectors share, and the numbers that each has unique. You have three
numbers. If more of them are odd then even, then the two unit multivectors
anticommute. If more of them are even then odd, then the two unit multivectors
commute. Some examples:

A B j k l Commute?
x̂yzt x̂ 3 0 1 no
x̂yz x̂yt 1 1 2 no
x̂y ŷz 1 1 1 no
x̂y ẑt 2 2 0 yes
x̂yz x̂ 2 0 1 yes
x̂zt ŷ 3 1 0 no
x̂ ŷ 1 1 0 no

(4.6)
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4.2 The Dirac Algebra

The choice of signature for the basis vectors of a Clifford algebra is not com-
pletely arbitrary.[11] For this book we will follow the lead of the Pauli algebra
which has positive signature (+ + +), and give the spatial basis vectors of the
Dirac algebra a positive signature. Thus our unit vectors square as follows:

t̂2 = −1, x̂2 = +1,
ŷ2 = +1, ẑ2 = +1. (4.7)

This is a less common choice of signature.
As with the Pauli algebra, any product of Dirac algebra vectors can be

reduced to ± a product that includes each vector at most once. This gives 16
Dirac “unit multivectors”, twice as many as the Pauli unit multivectors. We
will order the Dirac unit multivectors as follows:Dirac algebra unit multi-

vectors.
1̂, x̂, ŷ, ẑ,

t̂, x̂t, ŷt, ẑt,
x̂yz, ŷz, x̂z, x̂y,

x̂yzt, ŷzt, x̂zt, x̂yt.

(4.8)

Note that the above has been arranged so that the columns have orientation
n, x, y, and z, respectively. The orientation we called “neutral”, Eq. (2.13),
in the Dirac algebra now has time vectors, but these are present in the other
orientations and we will still call it the neutral orientation.

With our choice of signature, 10 of the Dirac unit multivectors square to
+1 and 6 square to −1:

{1̂, x̂, ŷ, ẑ, x̂t, ŷt, ẑt, ŷzt, x̂zt, x̂yt} +1,
{ŷz, x̂z, x̂y, t̂, x̂yz, x̂yzt} -1.

(4.9)

If we had chosen the opposite signature, we would have only 6 elements square
to +1 and it would be harder to make roots of unity in a real Dirac algebra.

The Dirac algebra is normally treated as a complex algebra. This means
that the Dirac algebra consists of sums of complex scalar multiples of the 16
Dirac unit multivectors. For example,

(1 + 3i)1̂ + (2 + 7i)x̂yz − 3ẑt (4.10)

is in the complex Dirac algebra. We can also consider the real Dirac algebra,
it would consist of sums of real scalar multiples of Dirac unit multivectors. An
example of an element in the real Dirac algebra is:

21̂− 5x̂+ 3.7ŷ + 22x̂yzt (4.11)

For the elementary particles we have need only of the complex Dirac alge-
bra. Our discussion of the real Dirac algebra is only for pedagogical purposes.
The real and complex Dirac algebras can be faithfully represented by real and
complex 4× 4 matrices, respectively.
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The Dirac equation is normally written with spinors. In our geometric
language, we write it as:

0 = (x̂∂x + ŷ∂y + ẑ∂z + t̂∂t +m)|ψ〉,
= (∇+m) |ψ〉, (4.12)

where we have introduced ∇ as the geometric gradient, the differential part of
the Dirac operator. We translate this into density operator form by replacing
the ket |ψ〉 with the product of the corresponding density operator with the
vacuum operator: ρψ ρ0. The resulting equation is:

(∇+m)ρψ ρ0. (4.13)

In the above equation, as in the first chapter, ρ0 is a constant primitive idem-
potent, and is quite arbitrary. Since ρ0 is constant, it does not interact with
the partial derivatives. Since ρ0 is arbitrary, we can rewrite the above with
several different values for ρ0.

Suppose ρ0, ρ′0, ρ′′0 and ρ′′′0 are a complete set of primitive idempotents of
the Dirac algebra so that 1̂ = ρ0 + ρ′0 + ρ′′0 + ρ′′′0 . Then we can write four
different Dirac equations (with four different ρψ:

0 = (∇+m)ρψ ρ0,
0 = (∇+m)ρ′ψ ρ

′
0,

0 = (∇+m)ρ′′ψ ρ
′′
0 ,

0 = (∇+m)ρ′′′ψ ρ′′′0 ,

(4.14)

Define Ψ as follows:

Ψ = ψρ0 + ψ′ρ′0 + ψ′′ρ′′0 + ψ′′′ρ′′′0 . (4.15)

Because a complete set of primitive idempotents annihilate one another, we
can pick out the ψs from Ψ by right multiplying by the appropriate primitive
idempotent:

ψ = Ψ ρ,
ψ′ = Ψ ρ′,
ψ′′ = Ψ ρ′′,
ψ′′′ = Ψ ρ′′′.

(4.16)

This means that we can add up the four equations of Eq. (4.14) into a single
equation for Ψ:

0 = (∇+m)Ψ. (4.17)

Now the above looks a lot like the usual spinor Dirac equation, but it has
four times as many degrees of freedom. It consists of four non interacting
Dirac equations. We will call this the “generalized Dirac” equation, and where
the context is clear, may leave off the word “generalized”. Since the operator
version of a wave function has four times as many degrees of freedom, we will
use capital letters to designate the operator version as in Ψ, and small letters
to designate the spinor version as in ψ.
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In particle physics, the Dirac equation is used to compute the propagators of
the various spin−1/2 fermions. We can think of the four propagators written as
above as applying to four different (i.e. “distinguishable”) spin−1/2 particles.
For example, we could assign ψ to the electron (and positron), and then assign
ψ′, ψ′′, and ψ′′′ to the three colors of the up quark.

If there were only four elementary fermions, we could consider our task
of unifying the elementary particles as well under way, but in fact there are
instead 24 of them, that is, the electron, the neutrino, three up quarks, three
down quarks, and then these eight particles in two more generations. Thus our
equation is 6 times too small. While the four spin−1/2 particles contained in
Ψ cannot be easily assigned to four elementary particles, we will retain this
idea and will later apply it to a preon model of the elementary fermions. But
the fact that we can assign multiple fermions to a single generalized Dirac
equation3 suggests that we should take a look at geometric transformations of
the generalized Dirac equation, and see if these can be related to the internal
symmetries of elementary particles.

Suppose that ιχ is a unit multivector from the Dirac algebra that happens
to square to 1̂. This could be one of the commuting roots of unity that we
could use to define a complete set of primitive idempotents. We can use ιχ to
define a transformation on the Dirac algebra as follows:

M → ιχMιχ. (4.18)

The above transformation preserves 0 and 1̂, and if M and N are in the Dirac
algebra, then their product and sum are transformed in a manner that preserves
multiplication and addition:

0 → ιχ0ιχ = 0,
1̂ → ιχ1̂ιχ = ι2χ = 1̂,

M +N → ιχ(M +N)ιχ = (ιχMιχ) + (ιχNιχ),
MN → ιχ(MN)ιχ = (ιχMιχ)(ιχMιχ).

(4.19)

We can also apply this transformation to ∇, and since multiplication and ad-
dition are preserved, we can transform a generalized Dirac equation into a new
generalized Dirac equation as follows:

0 = (∇+m)Ψ,
→ 0 = (ιχ∇ιχ + ιχmιχ)ιχΨ, (4.20)

where we have multiplied on the right by ιχ.
Suppose that Ψ is an eigenstate of ιχ. This could come about, for example,

if Ψ were a primitive idempotent (which we associate with the elementary
particles) and ιχ were one of the commuting roots of unity that define that

3The problem of defining the Dirac equation in the spinor formalism in geometric form
is far more complicated than the density operator formalism shown here. See Baylis[12] for
an enlightening discussion of various methods of geometrically defining the Dirac equation
for spinors.
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primitive idempotent. Then ιχ Ψ± = ±Ψ±, with the sign depending on the
eigenvalue. This overall sign can be canceled from Eq. (4.20):

0 = (ιχ∇ιχ + ιχmιχ)Ψ±,
= (ιχ∇ιχ ±m)Ψ±,
= ((ιχx̂ιχ)∂x + (ιχŷιχ)∂y + (ιχẑιχ)∂z + (ιχt̂ιχ)∂t ±m)Ψ±.

(4.21)

Now Ψ± is a function of (x, y, z, t). And the partial derivatives all have specific
values at each position in spacetime that depend on the details of how the wave
function depends on position and time (and not on how the wave function is
defined in the Clifford algebra). Therefore we can relate symmetries of the
wave function to geometric properties of the primitive idempotent Ψ±.

As a first example, let’s put ιχ = ît, and find out what sort of properties a
wave function might possess, if it is a eigenvector of this operator:

îtΨ±ît = ±Ψ±ît, (4.22)

and in addition satisfies the Dirac wave equation:

0 = (∇+m)Ψ±ît. (4.23)

Transform the above equation with ît to obtain:

0 = ît(∇+m)îtîtΨ±ît(x, y, z, t)ît,
= (îtx̂ît∂x + îtŷît∂y + îtẑît∂z + îtt̂ît∂t + îtmît)îtΨ±ît(x, y, z, t)ît,
= (−x̂∂x − ŷ∂y − ẑ∂z + t̂∂t +m)(±Ψ±ît(x, y, z, t))ît.

(4.24)
The trailing ît can be removed by multiplying on the right by ît. This removes
all the ît from the above. To get the differential operator back into ∇ form,
make a substitution to the coordinates:

x→ −x, y → −y, z → −z. (4.25)

This will negate the partial derivatives with respect to x, y, and z. The result
is:

0 = (∇+m)(±Ψ±ît(−x,−y,−z, t)). (4.26)

Comparing with Eq. (4.23), we see that this will happen automatically if

Ψ±ît(x, y, z, t) = ±Ψ±ît(−x,−y,−z, t), (4.27)

which is just the definition of even (+) and odd (−) parity in a wave function. Parity as an eigenvalue
relationTherefore, we define the geometric (or “internal”) parity operator P as:

P = ît. (4.28)

Note that in deriving the above we needed to compute how ît transformed the
unit vectors only. In the spinor version of this sort of thing one must also figure
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out how P changes the spinors, and since the spinors carry arbitrary phases
the process is more complicated and less definitive.

There is a subtle distinction between the way we have defined the parity
operator P in Eq. (4.28) and how this is done in most of the literature on
particle physics. We have defined the parity operator as an operator that lives
in the same Clifford algebra as everything else. The more usual practice is to
define the parity operator as something which acts on the state, ψ(x, y, z, t) and
converts it into a new state ψ′(x, y, z, t) = ±ψ(−x,−y,−z, t), with a factor of
±1 included as a consequence of the “internal parity” of the associated particle.
In this book, since our wave functions Ψ, contain more than one particle, the
parity operator is an operator no different from the rest of the unit multivectors.

We now move on to analyze the transformations of the other two unoriented
Dirac unit multivectors, îxyz and ̂ixyzt. As before, we assume eigenvectors of
these operators:

îxyzΨ±îxyz = ±Ψ±îxyz,̂ixyztΨ±îxyzt = ±Ψ±îxyzt.
(4.29)

The unoriented Dirac unit multivectors transform the basis vectors as follows:

α̂ îtα̂ît îxyzα̂îxyz ̂ixyztα̂ ̂ixyzt
x̂ −x̂ +x̂ −x̂
ŷ −ŷ +ŷ −ŷ
ẑ −ẑ +ẑ −ẑ
t̂ +t̂ −t̂ −t̂

. (4.30)

Applying the same analysis as with ît, we find that the time reversal operator
T is:

T = îxyz. (4.31)

A wave function Ψ±îxyz that is an eigenstate of T with eigenvalue ±1 andTime reversal
satisfies the Dirac equation, is either negated or not upon the action of time
reversal according to the eigenvalue:

îxyzΨ±îxyz = ±Ψ±îxyz,
Ψ±îxyz(x, y, z, t) = ±Ψ±îxyz(x, y, z,−t).

(4.32)

Again, note that our definition of time reversal is different from the usual. And
as before, since our states are operators, we need only define time reversal as a
transformation of operators, not spinors. For an elementary discussion of the
usual time reversal operator when applied to operators as well as fermions and
bosons, see [13, sec 4.4].

The remaining unoriented unit multivector, ̂ixyzt anticommutes with all of
the vectors and consequently is associated with the combination of parity and
time reversal. We stress that this is a state operator that does not commute
with our P or T rather than an operation that is performed on wave functions:PT as an operator on in-

ternal states.
P̂ T = ̂ixyzt. (4.33)
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If Ψ±îxyzt is an eigenstate of P̂ T , and a solution of the generalized Dirac
equation, then it satisfies the combined parity and time reversal equation:

Ψ±îxyzt(x, y, z, t) = ±Ψ±îxyzt(−x,−y,−z,−t). (4.34)

This is also the same as the helicity operator we will discuss later.
The other unit multivectors are oriented and correspond to various possible

spacetime symmetries of a solution to the Dirac equation. For example, ẑt
anticommutes with ẑ and t̂ and commutes with the rest of the vectors, and
therefore can be associated with wave functions that are even or odd with
respect to the combination of time reversal and mirror reflection in the z direc-
tion. Some of these symmetries are very important but are best understood in
the context of exponential functions of multivectors and we will discuss them
later.

4.3 Matrix Representations

The usual way of defining a matrix representation of a Clifford algebra is to
specify the matrices corresponding to the basis vectors of the Clifford algebra.
One multiplies these together to get the matrices for the various unit multivec-
tors, if desired. This technique doesn’t give much of a hint on how one finds
the matrix representation to begin with.

Since the density operator formalism associates quantum states with the
primitive idempotents, a more natural way of defining a matrix representation
is through the primitive idempotents. We will now illustrate the technique by
finding a representation for the Dirac algebra in 4× 4 matrices.

As with the 3× 3 matrices, it is easy to define the diagonal 4× 4 primitive
idempotent matrices. There are four such matrices. We will call them ρ±± as
follows:

ρ1 = ρ−− =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ρ2 = ρ−+ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



ρ3 = ρ+− =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ρ4 = ρ++ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


(4.35)

We will associate the above four primitive idempotent matrices with four prim-
itive idempotent elements of the Dirac algebra. These are the diagonalized
states. But this choice is not quite enough to define the representation. We
need to choose one further primitive idempotent which we will call ρD where
“D” stands for “democratic”. It is the only idempotent matrix that has all
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elements equal:

ρD =
1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (4.36)

We’ve specified five 4x4 primitive idempotent matrices. Together, these
matrices define a matrix representation in the following way. Consider products
of the form:

Umn = 4ρm ρD ρn, (4.37)

where ρm and ρn are independently any of the four diagonal primitive idem-
potent matrices. Then the matrix Umn has all its elements zero except for the
position (m,n) where it has a one. For example:Fully specifying a matrix

representation requires the
diagonalized states plus
the democratic state.

U24 = 4ρ2 ρD ρ4,

= 4


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

(4.38)

Therefore if we specify these five primitive idempotents, then the representation
is defined in that we can give a geometric interpretation of a 4× 4 matrix.

Of course we cannot pick any arbitrary set of 5 primitive idempotents and
use them to define a representation of the Dirac algebra. The five primitive
idempotent Clifford algebra elements we choose have to match the algebra of
the corresponding 4 × 4 primitive idempotent matrix elements of Eq. (4.35)
and Eq. (4.36).

For matching the algebras, we do not need to verify that addition matches.
The Clifford algebra and the matrix algebra are both linear spaces over their
basis elements and addition will be automatically equivalent. It is in the mul-
tiplication that there may be differences.

If it were not for the democratic primitive idempotent, ρD, our task would
be very simple. The diagonal primitive idempotents multiply very simply.
Any two different elements annihilate; they multiply to zero. So we need only
analyze how the democratic primitive idempotent interacts with the others.

In the Pauli algebra, the diagonal primitive idempotents correspond to the
~z and −~z directions. The democratic primitive idempotent of the 2×2 matrices
corresponds to the Clifford algebra primitive idempotent 0.5(1 + σx). That is:

1
2

(
1 1
1 1

)
=

1
2

(1 + σx). (4.39)
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There is a clue here. The Pauli diagonal primitive idempotents are perpen-
dicular to the Pauli democratic primitive idempotent. What we need is a
generalization of this relation to more complicated Clifford algebras.

In the Pauli algebra, the fact that the two vectors, ~z and ~x, are perpendic-
ular, can be written in the geometric density operator language as:

P (z → x) = 0.5ρz = ρz ρx ρz. (4.40)

We need to understand how this comes about so that we can pick out the
structural elements of ρx that cause it to be allowable as a democratic prim-
itive idempotent when ρz and ρ̄z are chosen as the diagonal primitive idem-
potents. Accordingly, rewrite the above with ρx written out as a sum of unit
multivectors:

P (z → x) = ρz 0.5(1̂ + x̂) ρz,
= 0.5ρz 1̂ ρz + 0.5ρz x̂ ρz.

(4.41)

In the above form, the transition probability has been written as two expecta-
tion values with respect to the quantum state ρz. Rewriting these in expecta-
tion value form we have:

P (z → x) = 〈0.51̂〉z + 〈0.5x̂〉z,
= 0.5ρz + 0.

(4.42)

Thus the transition probability is the expectation value of the scalar part of
ρx; the vector part of ρx has an expectation value of zero.

Now let us return to the 4×4 problem and compute the transition probabil-
ity for going from a diagonal primitive idempotent to the democratic primitive
idempotent. For example:

P (ρ2 → ρD) = ρ2 ρD ρ2,

=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

= 1
4ρ2.

(4.43)
Therefore we require that the primitive idempotent from the Clifford algebra
that we choose to be represented by ρD have an expectation value of 1/4 with
respect to any of the diagonal primitive idempotents of the Clifford algebra.
This is different from the value 1/2 that was obtained in the case of the Pauli
algebra, because the primitive idempotents of the Dirac algebra have scalar
values of 1/4 instead of 1/2.

Putting all this together, we have a procedure for designing a representation
of the Dirac algebra. First choose two commuting roots of unity. These define
four commuting primitive idempotents. Assign them in any order to the four
diagonal primitive idempotents ρ1, ρ2, ρ3, and ρ4. Second, find the expectation
values for the unit multivectors with respect to ρ1, ρ2, ρ3 and ρ4. Some of
these expectation values will be zero. Find a primitive idempotent that can be
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written from these zero expectation unit multivectors and assign it to ρD. The
result will be a representation of the Dirac algebra in 4× 4 matrices.

We can make one more improvement to the procedure. The process “find
the expectation values for the unit multivectors with respect to ρ1, ρ2, ρ3, and
ρ4” can be time consuming. There is a short cut for this calculation. Write
ρ±± as a product as follows:

ρ±± = 0.25(1± ι1)(1± ι2), (4.44)

where ι1 and ι2 are commuting roots of unity. Suppose that ι1 and ι2 are Dirac
unit multivectors. Let χ be the Dirac unit multivector for which we wish to
compute the expectation value. The computation is as follows:

〈χ〉±± = ρ±± χ ρ±±,
= 0.25(1± ι1)(1± ι2) χ 0.25(1± ι1)(1± ι2). (4.45)

To compute the above, let us attempt to bring χ to the front of the product of
idempotents, that is, to factor χ out. If χ commutes with ι1 and ι2, then we
can factor it out and the two primitive idempotents multiply together. But if χ
anticommutes with either or both of ι1 and ι2, then in factoring out χ we will
change the sign of either or both of ι1 and ι2. That is, we will change (1± ι1)
to (1∓ ι1) or the same for ι2. But there are two copies of (1± ι1) in the above,
and if one of them is changed to (1∓ ι1) then the two of them will annihilate
and the expectation value will be zero.

Therefore, the unit multivectors that we can use to make the democratic
primitive idempotent consist exactly of those unit multivectors that anticom-
mute with either of ι1 or ι2. Another way of saying the same thing is that we
can use any unit multivector that anticommutes with either of ι1 or ι2. Since ι1
and ι2 form a set of commuting roots of unity, it is clear that we cannot use ι1,
ι2, or their product, ι1ι2. Beyond that, if there were another (non scalar) unit
multivector χ that commuted with both ι1 and ι2, we could use either χ or iχ,
whichever squares to +1, to extend the set of commuting roots of unity from
having 2 elements to a set of size 3. Clearly the Dirac algebra can only have
two commuting roots of unity, so the simple rule for the choice of democratic
primitive idempotent is that we choose a unit multivector that is not included
in the set {ι1, ι2, ι1ι2}.

In choosing the democratic primitive idempotent there are a few more subtle
points. If we use ι3 and ι4 as the commuting roots of unity that define the
democratic primitive idempotent, then we have four choices for the primitive
idempotent according as we choose the signs in:

ρD = 0.25(1± ι3)(1± ι4). (4.46)

This means that for any given choice of the commuting roots of unity we have
four different possible democratic primitive idempotents. Suppose that we take
the positive signs. Then the democratic primitive idempotent becomes:

ρD = 0.25(1 + ι3)(1 + ι4),
= 0.25(1 + ι3 + ι4 + ι3ι4), (4.47)
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so the democratic primitive idempotent actually has three non scalar portions,
not two. And we must have that the expectation values of each of these is
zero. This means that some pairs of commuting roots of unity for the demo-
cratic primitive idempotent, that would seem to be compatible with the pair
of commuting roots of unity chosen for the diagonal roots of unity are actually
not compatible. We have to check not only the roots of unity, but also their
products for compatibility.

A more elegant way of defining whether the sets {ι1, ι2} and {ι3, ι4} are
compatible for defining the diagonal and democratic primitive idempotents is
to look at the groups generated by these sets under multiplication. We will
designate the group generated by multiplication as “G(ι1, ι2)”, so the groups
we are interested in here have the following elements:

G(ι1, ι2) = {1̂, ι1, ι2, ι1ι2},
G(ι3, ι4) = {1̂, ι3, ι4, ι3ι4}.

(4.48)

Then {ι1, ι2} is compatible with {ι3, ι4} if and only if

G(ι1, ι2) ∩G(ι3, ι4) = {1̂}, (4.49)

that is, they are compatible if and only if the only element that their generated
groups share is the scalar.

4.4 Dirac’s Gamma Matrices

The derivation of this process has been somewhat complicated and probably
confusing as well. To solidify the concepts, let us use this technique to work
out some representations of the Dirac algebra in 4 × 4 matrices. The Dirac
algebra is generally treated as a complex algebra, however, as an illustration,
let us find a real representation of the real Dirac algebra. This restricts us to
using only the positive signature unit multivectors listed in Eq. (4.9):

1̂, x̂, ŷ, ẑ, x̂t,

ŷt, ẑt
2
, ŷzt, x̂zt, x̂yt.

(4.50)

Of course we cannot use 1̂. The remaining 9 unit multivectors commute or an-
ticommute with each other according to the “+” and “−” signs of the following
table:

x̂ ŷ ẑ x̂t ŷt ẑt ŷzt x̂zt x̂yt
x̂ + − − − + + − + +
ŷ − + − + − + + − +
ẑ − − + + + − + + −
x̂t − + + + − − − + +
ŷt + − + − + − + − +
ẑt + + − − − + + + −
ŷzt − + + − + + + − −
x̂zt + − + + − + − + −
x̂yt + + − + + − − − +

(4.51)
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. If we were making a representation for some particular purpose, we would
choose two of these unit multivectors so that our representation would be diag-
onal for something we were particularly interested in. For example, if we were
associating spin−1/2 with the îyz, −îxz, and îxy elements we might want our
representation to have ẑt diagonal, as is traditional. The first two elements
that commute in the above table are x̂ and ŷt. We will choose these for the
commuting roots of unity that define the diagonal primitive idempotents. We
can assign the four primitive idempotents to ρn in any arbitrary order. There
are 4! = 24 choices. A natural order is:

ρ−− = ρ1 = 0.25(1− x̂)(1− ŷt),
ρ−+ = ρ2 = 0.25(1− x̂)(1 + ŷt),
ρ+− = ρ3 = 0.25(1 + x̂)(1− ŷt),
ρ++ = ρ4 = 0.25(1 + x̂)(1 + ŷt).

(4.52)

In defining the four diagonal primitive idempotents we’ve used three unit mul-
tivectors; x̂, ŷt and also their product, x̂yt.

For the democratic primitive idempotent we can use any two of the remain-
ing six positive signature unit multivectors:

ŷ ẑ x̂t ẑt ŷzt x̂zt
ŷ + − + + + −
ẑ − + + − + +
x̂t + + + − − +
ẑt + − − + + +
ŷzt + + − + + −
x̂zt + + + + − +

. (4.53)

There are nine pairs of commuting roots of unity:

{ŷ, x̂t}, {ŷ, ẑt}, {ŷ, ŷzt}, {ẑ, x̂t}, {ẑ, ŷzt},
{ẑ, x̂zt}, {x̂t, x̂zt}, {ẑt, ŷzt}, {ẑt, x̂zt}.

(4.54)

Some of these can’t be used because the groups they generate include non scalar
elements that are in G(ι1, ι2) = G(x̂, ŷt) = {1̂, x̂, ŷt, x̂yt}. Since ŷ x̂t = −x̂yt
and x̂yt ∈ G(x̂, ŷt), we cannot use the pair {ŷ, x̂t}. Since ẑ ŷzt = −ŷt, and
ŷt ∈ G(x̂, ŷt), we cannot use the pair {ẑ, ŷzt}. Finally, ẑt x̂zt = x̂, so we cannot
use the pair {ẑt, x̂zt}. This leaves six viable pairs for creating the democratic
primitive idempotent:

{ŷ, ẑt}, {ŷ, ŷzt}, {ẑ, x̂t},
{ẑ, x̂zt}, {x̂t, x̂zt}, {ẑt, ŷzt}.

(4.55)

We will choose the first of these pairs, {ŷ, ẑt}. We now have to choose which
of the four possible primitive idempotents to use, ρD = 0.25(1± ŷ)(1± ẑt). We
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will take the ++ case. This defines our representation of the Dirac algebra:

ρ1 = 0.25(1− x̂)(1− ŷt),
ρ2 = 0.25(1− x̂)(1 + ŷt),
ρ3 = 0.25(1 + x̂)(1− ŷt),
ρ4 = 0.25(1 + x̂)(1 + ŷt).
ρD = 0.25(1 + ŷ)(1 + ẑt).

(4.56)

After deciding that we would have x̂ and ŷt diagonal, we had 4! = 24 choices
for the order of ρ1, ρ2, ρ3 and ρ4. Then we had six pairs of commuting roots
of unity available for the democratic primitive idempotent. Finally we had
four sign choices for the democratic primitive idempotent. There are therefore
24× 6× 4 = 242 = 576 representations of the Dirac algebra that diagonalize x̂
and ŷt (and use only unit multivectors).

Our representation, Eq. (4.56), is written in the geometric language and
is quite elegant. To convert it into matrix form, one could use a fairly large
amount of algebra but there is a simple trick. First, since we have defined the
diagonal primitive idempotents, we can quickly find the solution for this part
of the matrix. To simplify our notation for the off diagonal elements, let Unm
designate the matrix which is all zero except for a 1 in position (n,m) and
rewrite Eq. (4.56) as:

U11 = 0.25(1̂− x̂− ŷt+ x̂yt),
U22 = 0.25(1̂− x̂+ ŷt− x̂yt),
U33 = 0.25(1̂ + x̂− ŷt− x̂yt),
U44 = 0.25(1̂ + x̂+ ŷt+ x̂yt).

(4.57)

The above amounts to four equations in four unknowns. But they are easier
to solve then one might expect:

+U11 + U22 + U33 + U44 = 1̂,
−U11 − U22 + U33 + U44 = x̂,

−U11 + U22 − U33 + U44 = ŷt,

+U11 − U22 − U33 + U44 = x̂yt,

(4.58)

The same principle will be applied to the off diagonal elements.
The off diagonal terms will have a similar form. To find them, first note

that we can write

Mmn = 4ρm ρD ρn,

= ρm(1̂ + ŷ + ẑt+ ŷzt)ρn,
= ρm ρn + ρm(ŷ + ẑt+ ŷzt)ρn,
= 0 + ρm(ŷ + ẑt+ ŷzt)ρn.

(4.59)

The zero in the above follows from the fact that we are considering off diagonal
terms so m 6= n and so ρm will annihilate ρn. We will factor the three inner
unit multivectors, ŷ, ẑt, and ŷzt to the left side of ρm. Since these terms do
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not commute with ρm, doing this will change ρm. The change will be that the
signs of the commuting roots of unity that make up ρm will be changed if that
commuting root of unity does not commute with the unit multivector we are
factoring out. The result of these sign changes will be that ρm will be converted
to some other ρ′m. Sometimes ρ′m will be equal to ρn and these terms will not
annihilate.

This is easier done than described. First we make a table showing which of
the unit multivectors we will factor, commute with which of the roots of unity
of the diagonal primitive idempotents:

x̂ ŷt
ŷ − −
ẑt + −
ŷzt − +

(4.60)

With the above, we can read off how ρm will be altered by the factoring out of
our three terms:

ŷ ẑt ŷzt
ρ−− → ρ++ ρ−+ ρ+−
ρ−+ → ρ+− ρ−− ρ++

ρ+− → ρ−+ ρ++ ρ−−
ρ++ → ρ−− ρ+− ρ−+

. (4.61)

The above was obtained by negating signs in the ρm on the left according to
the table of Eq. (4.60). It’s easier to use if we rewrite it as:

ŷ ẑt ŷzt
ρ1 → ρ4 ρ2 ρ3

ρ2 → ρ3 ρ1 ρ4

ρ3 → ρ2 ρ4 ρ1

ρ4 → ρ1 ρ3 ρ2

. (4.62)

We can read off the terms that are not annihilated in the off diagonal elements
from the above. The action of ŷ is to convert ρ1 → ρ4, ρ2 → ρ3, ρ3 → ρ2 and
ρ4 → ρ1. Therefore the matrix elements that ŷ will survive in are U14, U23,
U32, and U41:

U14 = ŷρ4 = 0.25(+ŷ − x̂y + t̂− x̂t),
U23 = ŷρ3 = 0.25(+ŷ − x̂y − t̂+ x̂t),
U32 = ŷρ2 = 0.25(+ŷ + x̂y + t̂+ x̂t),
U41 = ŷρ1 = 0.25(+ŷ + x̂y − t̂− x̂t).

(4.63)

As with the diagonal terms, the above are four equations in four unknowns
that have an easy to find solution:

+U14 + U23 + U32 + U41 = ŷ,
−U14 − U23 + U32 + U41 = x̂y,
+U14 − U23 + U32 − U41 = t̂,

−U14 + U23 + U32 − U41 = x̂t.

(4.64)
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At this point in time, we’ve found the matrix representation for x̂ in Eq. (4.58),
and the representations for ŷ and t̂ in Eq. (4.64). All that is left is ẑ, which we
can find by treating ŷzt in the same manner as we just did ŷ:

U13 = ŷztρ4 = 0.25(+ŷzt− x̂yzt+ ẑ − x̂z),
U24 = ŷztρ3 = 0.25(+ŷzt− x̂yzt− ẑ + x̂z),
U31 = ŷztρ2 = 0.25(+ŷzt+ x̂yzt+ ẑ + x̂z),
U42 = ŷztρ1 = 0.25(+ŷzt+ x̂yzt− ẑ − x̂z).

(4.65)

again four equations in four unknowns with the simple solution:

+U13 + U24 + U31 + U42 = ŷzt,

−U13 − U24 + U31 + U42 = x̂yzt,
+U13 − U24 + U31 − U42 = ẑ,
−U13 + U24 + U31 − U42 = x̂z.

(4.66)

We now have matrix representations for all four basis vectors. Gathering them
together:

x̂ = −U11 − U22 + U33 + U44,
ŷ = +U14 + U23 + U32 + U41,
ẑ = +U13 − U24 + U31 − U42,
t̂ = +U14 − U23 + U32 − U41.

(4.67)

In the usual matrix notation:

x̂ =


−1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 +1

 , ŷ =


0 0 0 +1
0 0 +1 0
0 +1 0 0

+1 0 0 0

 ,

ẑ =


0 0 +1 0
0 0 0 −1

+1 0 0 0
0 −1 0 0

 , t̂ =


0 0 0 +1
0 0 −1 0
0 +1 0 0
−1 0 0 0

 ,

(4.68)

As claimed, the above is a real representation of the Dirac algebra.

4.5 Traditional Gamma Representations

Given a representation of Dirac’s gamma matrices, we can extract the geometric
description of it by reversing the above procedure. We need only find which
unit multivectors are diagonal, and find the democratic primitive idempotent.
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A common definition of the gamma matrices[14] is:

x̂ =


0 0 0 +1
0 0 +1 0
0 −1 0 0
−1 0 0 0

 ŷ =


0 0 0 −i
0 0 +i 0
0 +i 0 0
−i 0 0 0



ẑ =


0 0 +1 0
0 0 0 −1
−1 0 0 0
0 +1 0 0

 t̂ =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1


(4.69)

Note that the above has signature the opposite of the one that we are using.
One of the diagonal roots of unity is given above, t̂.

To get the other diagonal root of unity, note that x̂ and ŷ multiply together
to give a diagonal matrix. But x̂y squares to −1, so the other diagonal root of
unity is:

îxy =


+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

 (4.70)

There is only one minor problem. The signs are reversed. To put these into
our (somewhat arbitrary) standard form that has ρ−− the diagonal primitive
idempotent with 1 in the top left corner, we need to negate t̂ and îxy. Later
we will associate this root with spin, and the root t̂ with parity. Therefore the
commuting roots of unity are:

ι1 = −t̂,
ι2 = −îxy. (4.71)

Thus the diagonal primitive idempotents are:

ρ±± = 0.25(1±−t̂)(1±−îxy). (4.72)

The democratic primitive idempotent takes a bit more work.
Computing x̂t = x̂t̂ gives:

x̂t =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

 so

−x̂t =


0 0 0 +1
0 0 +1 0
0 +1 0 0

+1 0 0 0

 .

(4.73)
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The same sort of inspiration suggests computing îyz to obtain:

îyz =


0 +1 0 0

+1 0 0 0
0 0 0 +1
0 0 +1 0

 (4.74)

These give 2 out of the 3 off diagonal sets of elements that we need. These
3 are going to appear in the geometric definition of the diagonal primitive
idempotent. The fourth term that appears in the diagonal primitive idempotent
is just the scalar. Therefore, we know that these two unit multivectors, −x̂t
and îyz are two of the commuting roots of unity. In fact, they do commute
and square to +1. Therefore, the third term we need is simply their product:

− ̂ixyzt =


0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

 . (4.75)

Note that the above is commonly written as γ5 = it̂x̂ŷẑ, the minus sign comes
about because we prefer to commute t̂ around to the right. The result is that
we have:

ρD = 0.25(1̂− x̂t+ îyz − ̂ixyzt). (4.76)

There are three commuting roots of unity associated with the democratic prim-
itive idempotent, x̂t, îyz and ̂ixyzt. Since we will associate îxy with spin in
the z− direction, we will associate îyz with spin in the x−direction. Note that
spin in the z and x directions are incompatible measurements, as is always the
case between a pair of commuting roots of unity when one is chosen from the
democratic primitive idempotent and the other from the diagonal primitive
idempotent. The operator ̂ixyzt will be associated with “helicity”, and the
operator x̂t will be associated with velocity (note, velocity, not momentum) in
the x direction.

The complete geometric description of the representation is:

ρ1 = ρ−− = 0.25(1̂−−t̂)(1̂−−îxy),
ρ2 = ρ−+ = 0.25(1̂−−t̂)(1̂ +−îxy),
ρ3 = ρ+− = 0.25(1̂ +−t̂)(1̂−−îxy),
ρ4 = ρ++ = 0.25(1̂ +−t̂)(1̂ +−îxy),
ρD = 0.25(1̂− x̂t)(1̂ + îyz).

(4.77)

The group formed by the commuting roots of unity for the diagonal primitive
idempotents is G(−t̂,−îxy) = {1̂,−t̂,−îxy, îxyt}. Note that, as we required in
our analysis of matrix representations of Clifford algebras, this group has no
non scalar elements in common with the group formed by the commuting roots
of unity for the democratic primitive idempotent, G(−x̂t, îyz). It is interesting
to note that to convert the above representation into a representation for the
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signature − + ++ we need only modify one of the four commuting roots of
unity, that is, we replaced −t̂ with ît or −ît.

A slightly less common representation of the Dirac algebra is the “chiral
representation”:

x̂ =


0 0 0 +1
0 0 +1 0
0 −1 0 0
−1 0 0 0

 ŷ =


0 0 0 −i
0 0 +i 0
0 +i 0 0
−i 0 0 0



ẑ =


0 0 +1 0
0 0 0 −1
−1 0 0 0
0 +1 0 0

 t̂ =


0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0


(4.78)

The above representation receives its name because the helicity operator, γ5

= it̂x̂ŷẑ = − ̂ixyzt is diagonalized:4

γ5 = − ̂ixyzt =


−1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 +1

 (4.79)

The x̂, ŷ, and ẑ representatives are unchanged so the other diagonal operator
is îxy. As before, the signs are reversed and to put them into our standard
geometric form requires the roots of unity as follows:

ι1 = − ̂ixyzt,
ι2 = −îxy.

(4.80)

Thus the diagonal primitive idempotents are:

ρ±± = 0.25(1±− ̂ixyzt)(1±−îxy). (4.81)

We continue on to the democratic primitive idempotent.
As before, we look for the unit multivectors that are off diagonal and con-

stant. An easy catch is t̂. And as before, îyz is such:

îyz =


0 +1 0 0

+1 0 0 0
0 0 0 +1
0 0 +1 0

 . (4.82)

The are commuting roots of unity, and as before, so is there product:

îyzt =


0 0 0 +1
0 0 +1 0
0 +1 0 0

+1 0 0 0

 . (4.83)

4One would suppose it should be called the “helicity representation”.
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Thus we have the democratic primitive idempotent of this representation as:

ρD = 0.25(1̂ + t̂+ îyz + îyzt). (4.84)

and the complete geometric description of the chiral representation is:

ρ1 = ρ−− = 0.25(1̂−− ̂ixyzt)(1̂−−îxy),
ρ2 = ρ−+ = 0.25(1̂−− ̂ixyzt)(1̂ +−îxy),
ρ3 = ρ+− = 0.25(1̂ +− ̂ixyzt)(1̂−−îxy),
ρ4 = ρ++ = 0.25(1̂ +− ̂ixyzt)(1̂ +−îxy),
ρD = 0.25(1̂ + t̂)(1̂ + îyz).

(4.85)

As usual, the groups formed by the commuting roots of unity for the diagonal
and democratic primitive idempotents share only the scalar. Note that in
comparison with the usual representation, the above swaps the parity ît, and
helicity ̂ixyzt unit multivectors. We now return to the usual signature, −+++.





Chapter 5

Algebra Tricks

His house is Gee & Tellus’ Sons,—so goes his jest with men—
He sold us Zeus knows what last year; he’ll take us in again.
Disguised behind a livery-team, fur-coated, rubber-shod—
Yet Apis from the bull-pen lows—he knows his brother God!

Now down the lines of tasselled pines the yearning whispers wake—
Pithys of old thy love behold. Come in for Hermes’ sake!
How long since that so-Boston boot with reeling Mænads ran?
Numen adest! Let be the rest. Pipe and we pay, O Pan.

In order to maintain a tight connection to the underlying geometry, most
of our calculations will be accomplished in the geometric language. Since

quantum theory is usually taught by choosing representations of symmetry
groups or algebras, these geometric techniques will be unfamiliar to many read-
ers. For convenience, we’ve collected together some of the more common ones
in this chapter.

5.1 Exponentials and Transformations

Define the exponential of a Clifford algebraic element M as usual:

exp(M) = 1̂ +M +M2/2! +M3/3! + .... (5.1)

Since the exponent of a matrix is defined, and since one can represent a Clifford
algebra in matrix form, the above is well defined. We can check to see what
happens when M is various things we’ve been working on.

Let ι be a root of unity, let a be a real number and compute exp(aι):

eaι = 1̂ + aι+ a2ι2/2! + a3ι3/3! + ...,

= 1̂ + aι+ a21̂/2! + a3ι/3! + ...,

= (1 + a2/2! + ...)1̂ + (a+ a3/3! + ...)ι,
= cosh(a)1̂ + sinh(a)ι.

(5.2)

71
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Similarly, if χ− squares to −1 and a is a real number,

eaχ− = cos(a)1̂ + sin(a)χ−. (5.3)

If we limit ourselves to the subalgebra generated by χ−, that is, elements of
the form

ar1̂ + aiχ−, (5.4)

where ar and ai are real numbers, we can treat χ− as an imaginary unit. For
example, given two numbers of the above sort, their product:

(ar1̂ + aiχ−)(br1̂ + biχ−) = (arbr − aibi)1̂ + (aibr + arbi)χ−, (5.5)

acts just like the product of two complex numbers:

(ar + iai)(br + ibi) = (arbr − aibi) + i(arbi + aibr). (5.6)

This means that we can bring in the machinery of complex numbers in making
calculations.1

In defining complete sets of primitive idempotents we’ve been using com-
plete sets of commuting roots of unity. Our roots of unity have been quite
pedestrian, x̂, ŷt, etc. The Dirac algebra includes much more general roots of
unity. For example, the following elements all square to +1:

0.6x̂+ 0.8ŷ, 2.6ẑ − 2.4t̂,
0.6ŷt+ 0.8ŷ, 2.6x̂− 2.4ŷzt.

(5.7)

The elements in the right column are of “mixed signature”, that is, they are a
sum over unit multivectors of different signature. The elements in the top row
are made from vectors, but the elements in the bottom row are multivectors.
In coming up with example multivector roots of unity of the sort above, one
must choose two unit multivectors that imitate two unit vectors, in that they
must anticommute.

Among these more general roots of unity, one can find sets of commuting
roots, and from these one can define complete sets of primitive idempotents.
Such complete sets can then be used to produce interesting representations
of the Dirac algebra that you can use to pester your students or annoy the
readers of your papers. It is a mathematical theorem of Clifford algebra that
any complete set of primitive idempotents for a given Clifford algebra has the
same lattice, so this would seem to be an unnecessary complication. However,
we are associating the basis vectors with coordinates for spacetime and this
gives a physical interpretation for such transformations.

If we replace x̂ with 0.6x̂ + 0.8ŷ (and modify ŷ accordingly), we recognize
this transformation as equivalent to a rotation around the ẑ axis. That is,

1This book is mostly concerned with discrete symmetries of particles so we do not get
into complex analysis (i.e. things involving integration and differentiation) here. However, it
should be mentioned that David Hestenes’ works[15] on the “geometric calculus” does this
in a way far more elegant, powerful, and geometrically natural than one would suppose from
the simple method shown here.
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modifying the coordinates by rotating the unit vectors around the z axis will
have this effect on the vectors. This is the obvious physical interpretation of
the upper left root of unity shown in Eq. (5.7). Similarly, if we perform a boost
in the −z direction to a coordinate system moving with respect to the original
one, we expect to see the z and t coordinates mixed in the manner seen in the
upper right root of unity of Eq. (5.7).

We can produce transformations of the roots of unity (and therefore the
primitive idempotents, and so the quantum states) by using exponential func-
tions as we will get to later in this section. For the top row of Eq. (5.7) these
will physically correspond to rotations and boosts. However, in doing this we
will also obtain transformations that move the usual roots of unity to the mixed
objects of the bottom row and these are more difficult to give a physical inter-
pretation. Nevertheless, the same mathematics that produces the boosts and
rotations also allow these, and we must consider the possibility that they have
a physical interpretation.

As a first example of an exponential transformation, consider the unit mul-
tivector x̂y, or rather, a real multiple of it, ax̂y. Since x̂y squares to −1, the
exponential is:

e±ax̂y = cos(a)1̂± sin(a)x̂y. (5.8)

Since x̂y commutes with ẑ and t̂, so does exp(ax̂y). But it anticommutes with
x̂ and ŷ. Consider transformations on a Clifford algebra’s elements of the
following form:

M → e+ax̂y M e−ax̂y, (5.9)

where M is an element of the Clifford algebra. Note that the above transfor-
mation is compatible with addition and multiplication on the Clifford algebra.
That is,

M +N → e−ax̂y (M +N) e+ax̂y = e−ax̂y M e+ax̂y + e−ax̂y N e+ax̂y,

MN → e−ax̂y (MN) e+ax̂y = e−ax̂y M e+ax̂y e−ax̂y N e+ax̂y,
(5.10)

and that the transformation takes 0 to 0 and 1̂ to 1̂.
The notions of primitive idempotents, commuting roots of unity, (and every-

thing else we discuss in the first three chapters of this book) have been defined
only through addition and multiplication, so the transformation of Eq. (5.9)
will map complete sets of primitive idempotents to complete sets of primitive
idempotents, and it will map complete sets of commuting roots of unity to
complete sets of commuting roots of unity.

Any element of the Clifford algebra can be described in terms of multipli-
cation and addition of basis vectors, so, since the transformation is compatible
with multiplication and addition, we can fully understand its effect on a Clif-
ford algebra by seeing what it does to the basis vectors. As usual, we compute
the following by again using the method of factoring the basis vectors out to
the left, but now, instead of having primitive idempotents annihilate against
each other, we have two exponentials that either cancel or multiply. The x̂



74 CHAPTER 5. ALGEBRA TRICKS

vector is transformed by rotating it towards ŷ:

x̂ → (cos(a)1̂− sin(a)x̂y)x̂(cos(a)1̂ + sin(a)x̂y),
= x̂(cos(a)1̂ + sin(a)x̂y)(cos(a)1̂ + sin(a)x̂y),
= x̂e2ax̂y,

= x̂(cos(2a)1̂ + sin(2a)x̂y),
= cos(2a)x̂+ sin(2a)ŷ.

(5.11)

Similarly, the ŷ vector is transformed by rotating it towards −x̂:

ŷ → (cos(a)1̂− sin(a)x̂y)ŷ(cos(a)1̂ + sin(a)x̂y),
= ŷ(cos(2a)1̂ + sin(2a)x̂y),
= cos(2a)ŷ − sin(2a)x̂.

(5.12)

Since ẑ and t̂ commute with x̂y, they are not effected by the transformation.
Thus we see that this transformation is a rotation around an axis through the
ẑ direction that sends the x̂ vector towards the ŷ vector.

Similarly, the unit multivector ẑt generates a boost in the ẑ direction. The
exponential of aẑt gives a hyperbolic function:

eaẑt = cosh(a)1̂ + sinh(a)ẑt. (5.13)

This commutes with x̂ and ŷ so the associated transformation:

M → e−aẑt M e+aẑt, (5.14)

leaves x̂ and ŷ unchanged. To find the effect on ẑ and t̂, let us introduce a new
way of factoring that works with any analytic function of a Clifford algebra
element, and which will speed up this sort of calculation:

f(+ẑt) x̂ = x̂ f(+ẑt),
f(+ẑt) ŷ = ŷ f(+ẑt),
f(+ẑt) ẑ = ẑ f(−ẑt),
f(+ẑt) t̂ = t̂ f(−ẑt).

(5.15)

That is, so long as you can write the function f as a series, the odd terms will
anticommute and the even terms will commute. This will give the factorization
shown above. Thus the effect of the transformation on ẑ:

ẑ → e−aẑt ẑ e+aẑt,

= ẑ e+2aẑt = ẑ(cosh(2a) + sinh(2a)ẑt),
= cosh(2a)ẑ + sinh(2a)t̂.

(5.16)

Similarly, the transformation on t̂ is:

t̂ → t̂ e+2aẑt = t̂(cosh(2a) + sinh(2a)ẑt),
= cosh(2a)ẑ + sinh(2a)t̂.

(5.17)
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Let v be a velocity between 0 and c. Define a by

a = 0.5 tanh−1(v/c). (5.18)

Then tanh(2a) = v/c. From trigonometry, we have:

cosh(2a) = 1/
√

(1− v2/c2),
sinh(2a) = (v/c)/

√
(1− v2/c2).

(5.19)

Putting these into the transformations of ẑ and t̂, we see that:

ẑ → (ẑ + t̂v/c)/
√

(1− v2/c2),
t̂ → (t̂+ ẑv/c)/

√
(1− v2/c2),

(5.20)

which is the usual form for a boost in the ẑ direction.
More generally, let ~u = (ux, uy, uz) be a unit vector. Then the bivector

UR = uxŷz − uyx̂z + uzx̂y (5.21)

generates a rotation through the ~u axis. That is, to rotate by an angle θ around
the ~u axis, one uses the transformation:

M → e−θU/2 M e+θU/2. (5.22)

Similarly, to boost in a direction ~v = (vx, vy, vz) one uses the bivector

VB = vxx̂t+ vy ŷt+ vz ẑt. (5.23)

In general, boosts and rotations do not commute. However, let ~v = ~u, (or
= −~u) and compute the product of the two generators:

URUB = (uxŷz − uyx̂z + uzx̂y)(uxx̂t+ uy ŷt+ uz ẑt). (5.24)

The above consists of 9 products. The off diagonal products, such as uxŷzuy ŷt
and uy ŷtuxŷz, come in pairs and like this pair, their unit multivectors anticom-
mute and therefore the pairs all cancel. The only terms left are the diagonal
terms, and therefore:

URUB = u2
xx̂yzt+ u2

yx̂yzt+ u2
zx̂yzt,

= x̂yzt.
(5.25)

The above is i times the helicity operator.
The rotation bivector UR of Eq. (5.21) squares to −1. To convert it to a

root of unity, we multiply it by i. On the other hand, the boost bivector, UB ,
is already a root of unity. Since these two commute, they form a complete set
of commuting roots of unity as we have used to define primitive idempotents.
The helicity operator is the third non scalar element of the group generated by
UR and UB . All accepted experimental observations are apparently compatible
with the assumption that the laws of physics are symmetric under rotations and
boosts. It is therefore very natural that helicity is so important to elementary
particles.
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5.2 Continuous Symmetries

Our primary consideration in this book are the elementary particles, and since
we are associating the elementary particles with the primitive idempotents, it
is natural for us to examine the exponential transformations from the point of
view of what they do to the primitive idempotents.

Suppose that ιχ and ι′χ square to +1 and commute so that they can be used
as a complete set of commuting roots of unity, which then define a complete set
of primitive idempotents. Then these primitive idempotents are eigenvectors
of ιχ with eigenvalues of ±1:

ιχ0.25(1̂± ιχ)(1̂ + κι′χ) = ±0.25(1̂± ιχ)(1̂ + κι′χ),
ιχρ± = ±ρ±,

(5.26)

where κ is either +1 or −1, we don’t care which. Then ρ± commutes with ιχ
and therefore this primitive idempotent is left unchanged by the exponential
transformation generated by ιχ:

ρ± → e−aιχρ±e
+aιχ ,

= ρ±e
−aιχe+aιχ ,

= ρ±.
(5.27)

Therefore, the primitive idempotents that can be made from a given root of
unity are precisely the quantum states that are the fixed points of the expo-
nential transformation defined by that root of unity.

If χ squares to −1, it is not a root of unity. In this case we cannot make
primitive idempotents out of χ but we must instead use iιχ = i χ. The above
analysis will then apply. That is, the primitive idempotents made from ιχ
will be just those states that are unchanged by the exponential transformation
defined by χ.

Before we examine the effect of the exponentials of the remaining unit multi-
vectors, we should first discuss the classification of the Dirac unit multivectors.
As with the Pauli unit multivectors, the Dirac unit multivectors can be clas-
sified according to the number of vectors, that is, by the blade. There are 5
blades:

{1̂},
{x̂, ŷ, ẑ, t̂},

{x̂y, x̂z, ŷz, x̂t, ŷt, ẑt},
{ŷzt, x̂zt, x̂yt, x̂yz},

{x̂yzt}.

(5.28)

This classification makes sense from a Clifford algebra sense, but not so much
sense from a physics standpoint. It is better to treat t̂ as different from the
spatial vectors. This gives eight “time-blades”:

{1̂}, {t̂}
{x̂, ŷ, ẑ}, {x̂t, ŷt, ẑt},
{x̂y, x̂z, ŷz}, {ŷzt, x̂zt, x̂yt},
{x̂yz}, {x̂yzt}.

(5.29)
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The scalar, 1̂ generates only the trivial exponential transformation that
doesn’t move anything around, so we won’t discuss it further. Of the remaining
seven, they each square to +1 or −1. Following the mathematics of the previous
section, the unit multivectors that square to +1 will generate transformations
that looks like boosts, that is, that uses hyperbolic cosines and sines, while the
unit multivectors that square to −1 will generate transformations that look
like rotations. But we can always multiply by i to convert unit multivectors
from the +1 square type to the −1 type or vice-versa so we need not concern
ourselves much with this.

A more concise way of describing the effects of the exponential transfor-
mations is to describe their Lie algebras instead of their Lie groups. That is,
we will look at the infinitesimal boosts and rotations instead of the boosts and
rotations. Practically, this means that instead of writing, for the exponential
transformation generated by x̂y that x̂→ cos(2a)x̂+ sin(2a)ŷ, we will instead
simply write half the infinitesimal generator of the rotation, +ŷ.

We will list only the transformations for the unit multivectors that are
neutrally oriented or are z oriented. The remaining unit multivectors are anal-
ogous to the z oriented ones. Then the complete set of infinitesimal rotation
generators are:

x̂y ẑt x̂yzt ẑ t̂ x̂yz x̂yt

x̂ +ŷ 0 +ŷzt +x̂z +x̂t 0 0
ŷ −x̂ 0 −x̂zt +ŷz +ŷt 0 0
ẑ 0 +t̂ +x̂yt 0 +ẑt 0 +x̂y
t̂ 0 +ẑ +x̂yz −ẑt 0 −x̂yzt 0

(5.30)

The first column gives the rotation around the z-axis. The second column gives
the boost in the z direction. The third column is helicity.

5.3 Velocity

In quantum mechanics, the operators for energy and momentum arise as gener-
ators of infinitesimal translations in time and position, respectively. In defining
this, there is no need to include any geometric information as such, the same
translations apply to all sorts of particles of whatever spin. As such, there is
no geometric content of the Clifford algebra sort involved in their definitions.
In addition, energy and momentum have units that involve mass, and since
the origin of mass is a primary topic of this book, were we to begin by assum-
ing energy and momentum we would be making an argument that is arguably
circular. Max Jammer discusses this problem at length in [16].

On the other hand, position and velocity are concepts that do not require
mass to be defined. The concepts of position and time arise naturally from
our coordinate system, they are simply (x, y, z) and t. And it turns out that
velocity is also a natural geometric object in the Clifford algebra theory, which
we now discuss. From here on, we will be working with the massless Dirac
equation instead of the massive one.
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Let Ψ(x, y, z, t) be a plane wave that is moving with velocity ~v = (vx, vy, vz).
A plane wave has the same value across the surface of a plane so that the value
of the wave can be completely determined for all positions and time just by
watching what values occur at a particular point over all time. The speed of
the plane wave is v =

√
v2
x + v2

y + v2
z . The part of this speed in the x direction

is vx/v. So the point (x, 0, 0) gets its values delayed by x(vx/v)/v from the
value of the plane wave at (0, 0, 0). Similarly for the point (0, y, 0) and (0, 0, z).
Accordingly, we can write:

Ψ(x, y, z, t) = Ψ(0, 0, 0, t− (xvx + y/y + zvz)/v2). (5.31)

We assume that Ψ satisfies the generalized massless Dirac equation. This
allows us to compute as follows:

0 = (∇)Ψ(x, y, z, t),
= (x̂∂x + ŷ∂y + ẑ∂z + t̂∂t)Ψ(0, 0, 0, t− (xvx + yvy + zvz)/v2),
= (t̂− (vxx̂+ vy ŷ + vz ẑ)/v2)Ψt(0, 0, 0, t).

(5.32)

To put the above into a form more familiar from the point of view of primitive
idempotents, we multiply on the left by −0.5t̂. We obtain:

0 = 0.5(1̂− (vxx̂t+ vy ŷt+ vz ẑt)/v2)Ψt(0, 0, 0, t). (5.33)

Of course Ψ(0, 0, 0, t) = constant solves the above. But if we want more inter-
esting plane waves, that is, if Ψt is not everywhere zero, we need to have Ψt

multiply against 0.5(1̂− (x̂tvx + ŷtvy + ẑtvz)/v2) to give zero.
Multiplying to give zero is what annihilating idempotents are for. Idempo-

tents are defined by roots of unity, so we look for one in this problem. Note
that

(x̂tvx + ŷtvy + ẑtvz)2 = (v2
x + v2

y + v2
z)1̂, (5.34)

so ιv = (x̂tvx + ŷtvy + ẑtvz)/v2 is a root of unity, if v = 1, and defines annihi-
lating idempotents:

0.5(1̂± ιv) = 0.5(1̂± (x̂tvx + ŷtvy + ẑtvz)). (5.35)

Comparing with Eq. (5.33) we see that Ψt will be annihilated if we put:

Ψt = 0.5(1̂ + x̂tvx + ŷtvy + ẑtvz)dK/dt, (5.36)

where K(t) is an arbitrary2 Clifford algebra constant times any scalar func-
tion of time. An example function for K that has the usual sinusoidal time
dependence is K(t) = (x̂yz + 3x̂− 12) sin(t).

What we have demonstrated here is that we can produce velocity eigenstates
of the massless Dirac equation. In the previous section we showed that the
exponential transformations produced from x̂t, ŷt or ẑt corresponded to boosts

2Okay, one that does not annihilate 0.5(1 + ιv).
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in the directions given by the orientation of these unit multivectors. Now we
see that the velocity eigenstates of the massless Dirac equation are the states
that are eigenstates of boosts.

Furthermore, in examining the chiral representation of the Dirac equation in
Section (4.5), we saw that the three commuting roots of unity chosen to define
the diagonal primitive idempotents of the representation were the operator for
spin in the z direction îxy, the helicity operator ̂ixyzt, and what we now see
to be the operator for velocity in the z direction: ẑt.

That the Dirac equation produces natural velocity eigenstates, with velocity
eigenvalues of ±1, has been known since the equation was first discovered. The
idea was explored in the “zitterbewegung” theory of the electron. This theory
supposed that the electron exhibited very high speed motion at speed c, and
an approximately stationary electron is produced only by the high frequency
reversals of direction. This theory has been explored by David Hestenes using
the geometric algebra in the context of the state vector formulation of quantum
mechanics.[17] This book will reopen this idea, but from a density operator
point of view, and with chiral states.

5.4 Helicity and Proper Time

This section is rather speculative and is not entirely necessary, but is included
for completeness. The helicity operator, γ5 = − ̂ixyzt has some interesting
properties. It squares to +1 and it anticommutes with the whole set of basis
vectors:

(− ̂ixyzt)2 = 1,
x̂ (− ̂ixyzt) = −(− ̂ixyzt) x̂,
ŷ (− ̂ixyzt) = −(− ̂ixyzt) ŷ,
ẑ (− ̂ixyzt) = −(− ̂ixyzt) ẑ,
t̂ (− ̂ixyzt) = −(− ̂ixyzt) t̂.

(5.37)

These are exactly the attributes that we would require of a spatial basis vector.
For example, compare the above with the following equations where − ̂ixyzt is
replaced by ẑ:

(ẑ)2 = 1,
x̂ (ẑ) = −(ẑ) x̂,
ŷ (ẑ) = −(ẑ) ŷ,
t̂ (ẑ) = −(ẑ) t̂.

(5.38)

We are therefore somewhat justified in thinking of − ̂ixyzt as an additional
spatial basis vector and write:

ŝ = − ̂ixyzt. (5.39)

There is a problem; “what direction should we associate with ŝ?”,but ig-
noring that for the moment, the above switch replaces our 4−dimensional
complex Clifford algebra generated by the 4 basis vectors {x̂, ŷ, ẑ, t̂} with a
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5−dimensional real Clifford algebra generated by the 5 basis vectors {x̂, ŷ, ẑ,
ŝ, t̂}. In this section we explore this version of the Dirac algebra.

In this new 5−dimensional Clifford algebra, the imaginary unit becomes a
real geometric object:

ŝ = − ̂ixyzt,
îŝŝ = −îŝ ̂ixyzt,
î = +ŝ x̂yzt,

= − ̂xyzst.
(5.40)

Thus the usual complex Dirac algebra can be thought of as a real 5−dimensional
Clifford algebra. But if we are to do more than just think of ŝas a spatial vector,
we need to associate some sort of spatial coordinate with the basis vector.

The original reason Dirac designed the gamma matrices was to achieve a
relativistic quantum mechanics, so it is natural to return to relativity for an
inspiration on how to interpret ŝ. The signature of the Dirac algebra comes
from the line element, which we will choose to write as:

−ds2 = −dt2 + (dx2 + dy2 + dz2),
= (t̂dt)2 + (x̂dx)2 + (ŷdy)2 + (ẑdz)2.

(5.41)

The above is a bit ugly from a geometric point of view because the right hand
side is written as an operator, but the left hand side is a scalar. To treat ds
as if it were a differential associated with a coordinate, we move it to the right
hand side and bring in the basis vector ŝ.The above line element is transformed
to

0 = (x̂dx)2 + (ŷdy)2 + (ẑdz)2 + (ŝds)2 + (t̂dt)2. (5.42)

The new line element describes a spacetime with four spatial dimensions and
one time dimension, but there is no longer a scalar proper time on the left hand
side. This would be appropriate for a theory that applied to massless particles
that all travel at the speed of light in the presence of a hidden dimension with
a circular coordinate s.

Similar ideas appear in Jose Almeida’s work[18], which rewrites gravita-
tional dynamics, electromagnetism, and quantum mechanics in a common
mathematical approach using Clifford / Geometric algebra by supposing “that
all material particles follow null geodesics of a 5D space”. He uses the same
signature, − + + + + for the five dimensions as here. The primary difference
is that he works in the state vector formalism instead of the density operator
formalism. A less important difference is that he does not choose to assume
that ŝ corresponds to a literal hidden dimension.

It should be mentioned that if we were to choose the opposite signature
for a 5−dimensional Clifford algebra, +−−−−, there would be no geometric
imaginary unit. Instead, while ̂xyzst would still commute with the algebra, it
would square to +1 and we would be faced with the predicament of having a
commuting pseudoscalar 1 different from the usual one.



Chapter 6

Measurement

No proposition Euclid wrote,
No formulae the text-books know,

Will turn the bullet from your coat,
Or ward the tulwar’s downward blow.

Strike hard who cares--shoot straight who can—
The odds are on the cheaper man.

W ithout measurement, waves need never be associated with particles.
Measurement is the heart of quantum mechanics, the difference between

it and classical mechanics.
In the 1950s, Julian Schwinger wrote down an elegant but little noticed

foundation for quantum mechanics that he called the “Measurement Algebra”.
In this chapter we introduce what is now known as “Schwinger’s Measure-
ment Algebra”, and apply the primitive idempotent calculations of the previous
chapters to the problem of determining the structure of the natural elementary
particles of a Clifford algebra.

6.1 The Stern-Gerlach Experiment

An experiment, simple in concept, that illustrates the difference between classi-
cal and quantum effects is that originally carried out by Otto Stern and Walter
Gerlach in 1922. An oven heats up atoms, for example silver, until they form
a gas. In a vacuum, the silver atoms travel in straight lines and can be formed
into a beam by a plate with a small hole in it. The beam of atoms then travels
through the influence of a magnetic field to a screen. See Fig. (6.1).

Classically, the atoms act like small magnets. The reader is familiar with
how small magnets act in the presence of a magnetic field because this is the
principle on which the magnetic compass operates. The magnetic field induces
a torsion on the compass magnet, causing the compass to turn until it aligns
itself with the local magnetic field. But there is no net attractive force on the
magnet.

81
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Oven Plate Magnet Screen

BeamC
C
CCO

Figure 6.1: The Stern-Gerlach experiment: Atoms are heated to a gas in
an oven. Escaping atoms are formed into a beam by a small hole in a plate.

A magnet influences the beam, which then forms a figure on a screen.

On the other hand, the reader is also familiar with the fact that a small
magnet can feel not just torsion, but attraction and repulsion when it is in the
presence of the magnetic field created by another small magnet. The difference
between this case and the compass is that Earth’s magnetic field is locally
homogenous. To arrange for a small magnet to feel attraction and repulsion,
one must arrange for the magnetic field to be non homogenous.

So Stern and Gerlach ran the beam of atoms through a magnetic field that
was as non homogeneous as they could create. They expected that the various
atoms would feel different forces depending on their orientation and that this
would spread out the pattern deposited on the screen.

We can only imagine their surprise and consternation when the figure turned
out not to be simply an elongated spot, but instead split into two distinct spots.
The usual explanation for an unexpected result in an experiment such as this,
is inattentiveness on the part of a graduate student, but the effect was real.
An atom either went up or down, it was as if there were only two possible
orientations for the atom’s magnetic field, “up” or “down”.

The tendency to go up or down in an inhomogeneous magnetic field turned
out to be preserved. If one adjusted the screen to block only the atoms in
the “down” spot, leaving the “up” atoms as a beam, and arranged for another
inhomogeneous magnetic field for these atoms to traverse, all of these atoms
again took the “up” path. Of course “up” and “down” are determined by the
orientation of the magnet, for example, the magnets might be arranged so that
their north poles point up and south poles down.
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Ĵ

6

-

x

z

y J
J
JJ

J
J
JJ

J
J
JJ

J
J
JJ

+z

+x

rr
r r

Figure 6.2: Two Stern-Gerlach experiments, one oriented in the +z direc-
tion, the other oriented in the +x direction.

There are two orientations involved in the Stern-Gerlach experiment. The
experiment requires an inhomogeneous magnetic field, and the orientation of
this field determines how the beam is split. This is the obvious, macroscopic
orientation. The second orientation is the orientation of the magnetic field of
the atoms. This orientation is microscopic and our understanding of it is only
indirect.

We can imagine arranging the magnetic field in orientations other than
up and down. If the magnet is oriented horizontally instead of vertically, the
beam is deflected into two horizontal spots instead of vertical, see Fig. (6.2).
This raises the question of what happens when the Stern-Gerlach experiment
is performed on a beam of atoms that have previously been separated with a
different orientation.

It turns out that the results of this sort of experiment can be accurately
predicted using the projection operators of the Pauli algebra. The reason for
this is that the two spots are evidence of a spin-1/2 quantum state, just the
states of the Pauli algebra. When other atoms are sent through a Stern-Gerlach
experiment, the number of spots they produce can be different from two. But
the elementary fermions are spin-1/2 particles and the case of two spots is the
one we will examine in great detail.
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6.2 Filters and Beams

Operators as used in this book, have one input and one output. On the other
hand, the Stern-Gerlach experiment has one input and two outputs. To make
the Stern-Gerlach experiment fit into our mathematical apparatus, we have to
rearrange it so that it has only one output. The way to do this is to imagine
that after the beam is split in two, only one of the beams is allowed to exit the
experiment. The other is absorbed by a beam stop. We will call this type of
apparatus a “Stern-Gerlach Filter”.

We want to model the effect of sending the output beam of a Stern-Gerlach
filter directly into the input of another Stern-Gerlach filter so we must ignore
the details of the oven that produced the atoms, the plate that defined the
beam, and the screen that absorbed the spots. Instead, we will pay attention
only to the inhomogeneous magnetic field. More, we will ignore the details of
the magnetic field and pay attention only to its orientation.

The inhomogeneous magnetic field of a Stern-Gerlach experiment is ar-
ranged to cause the atoms to split in two beams going in slightly different
directions. Since a Stern-Gerlach filter keeps only one of these two beams,
we can define the orientation of the filter by the direction that is kept. For
example, if a horizontal beam is split by the experiment into two beams, one
going slightly up and the other going slightly down, and the filter keeps the
beam going slightly up, then the orientation we associate with this filter will
be “up”, which we designate by a unit vector, (0, 0, 1)

Let ~v = (vx, vy, vz) be a unit vector. The projection operator for spin in
the ~v direction is:

ρv = 0.5(1 + vxx̂+ vy ŷ + vz ẑ). (6.1)

This projection operator satisfies the idempotency relation:

ρv ρv = ρv, (6.2)

and this matches the experimentally observed fact that a beam that passes a
Stern-Gerlach filters oriented in the ~v direction will then pass another Stern-
Gerlach filter oriented in that same direction.

Given a Stern-Gerlach filter oriented in the direction ~v, we can imagine the
complementary Stern-Gerlach filter that switches the beam stop between the
two split beams. Instead of passing the up beam and halting the down beam,
the complementary Stern-Gerlach filter does the reverse. The projection oper-
ator associated with this complementary Stern-Gerlach filter is the projection
operator associated with the vector in the opposite direction.

The Stern-Gerlach apparatus oriented in the +z direction is represented by
the projection operator:

ρ+z = 0.5(1 + ẑ), (6.3)
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and so the complementary projection operator is

ρ−z = 0.5(1− ẑ). (6.4)

These two projection operators annihilate:

ρ+z ρ−z = 0, (6.5)

and this corresponds to the fact that two consecutive Stern-Gerlach filters
oriented in opposite directions will pass no beam – they act as a beam stop.
Since the associated projection operators multiply to give zero, we associate
zero with a beam stop.

Since we are representing consecutive experiments by multiplication, the
experiment that does nothing to the beam must be represented by 1̂, as “doing
nothing” must commute with all other possible experiments. On the other
hand, the sum of two complementary projection operators is unity. For exam-
ple:

ρ+z + ρ−z = 0.5(1 + ẑ) + 0.5(1− ẑ) = 1̂. (6.6)

This meets up with the experimental fact that one can split a beam with
a beam splitter, recombine the two split beams, and the result is a beam
indistinguishable from the original.

6.3 Statistical Beam Mixtures

In the operator formalism, one represents quantum states as operators. With
the Stern-Gerlach filters also represented by operators, the mathematical lan-
guage is unified and simplified. But the operators that represent Stern-Gerlach
filters are projection operators while quantum states are more general.

Let ρ+z and ρ−z be the projection operators that represent Stern-Gerlach
filters oriented in the +z and −z direction. While we have been using these
operators to represent the Stern-Gerlach filters, we can also think of them as
representing the beam that results when an unpolarized beam is sent through
their respective Stern-Gerlach filter. This is an important philosophical point–
we are using the same mathematical object to represent both the beam and
the filter that produces the beam. But we can only do this when the intensity
of the beam is known, and this means that we are assuming implicitly some
unit intensity for the unpolarized beam applied to the filter.

In recombining two beams, we earlier noted that ρ+z+ρ−z = 1̂, that is, the
act of splitting and recombining is equivalent to leaving the beam unmodified.
Our use of the notation here is very natural from the point of view of the
operators but it is at variance with the traditional way of doing quantum
statistical mechanics. The difference amounts to a choice of normalization.
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In the standard formalism of quantum mechanics, the normalization of
quantum states is defined so that probabilities are easy to compute. This
book abandons this tradition and instead normalizes quantum states so that
their energies are defined naturally. This is why we can split and recombine
beams and have their quantum states computed by simple addition; In our
formalism when one represents a beam by an operator, the scalar part of the
operator defines the beam intensity in terms of particles per second or what
have you. When an unpolarized beam is divided in two by a Stern-Gerlach
experiment, our intensity is divided as well.

To illustrate the standard method of describing a mixed beam, let us con-
sider making a beam that is partly spin up and partly spin down. Since the
standard method normalizes probabilities, we have to choose two fractions that
add to unity. For example, we can have a beam that is p spin up and q spin
down where p+ q = 1, and represent the combined beam, ρ by:

ρ = pρ+z + qρ−z,
= 0.5p+ 0.5pẑ + 0.5q − 0.5qẑ,
= 0.5 + 0.5(p− q)ẑ,

=
(
p 0
0 q

)
.

(6.7)

The traditional quantum statistical entropy of a mixture is defined by:

S = −k tr(ρ ln(ρ)), (6.8)

where k is Boltzmann’s constant. For a diagonalized state, the logarithm of
the matrix is easy to compute and one finds:

Sρ = −k(p ln(p) + q ln(q)),
= −k ln(ppqq). (6.9)

In the above, note that since p and q are between 0 and 1, so are pp and qq.
The entropy is therefore positive. The maximum value for the entropy occurs
when p = q = 0.5 and is k ln(2).

In classical thermodynamics, whenever two separated systems are brought
into contact, their total entropy is expected to increase or, at best, stay con-
stant. Therefore the quantum states that maximize entropy are of particular
interest.

Suppose that we have a complete set of N mutually annihilating primitive
idempotents. We can imagine having a beam made up of a mixture of p1 of
the first stateρ1, p2, of the second state ρ2, and so on up to pN of the Nth
stateρN , with p1 + p2 + ...+ pN = 1. Then the entropy is defined by

S = −k ln(pp11 p
p2
2 ...p

pN
N ). (6.10)
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A small amount of calculus shows that this function is maximized when p1 =
p2 = ... = pN = 1/N .

Since ρ1, ...ρN form a complete set of primitive idempotents, they sum to
unity. Therefore, the quantum mixture that maximizes entropy can be repre-
sented by the operator:

ρMax = (ρ1 + ρ2 + ...+ ρN )/N = 1̂/N. (6.11)

Thus we see that the quantum mixture that has the maximum entropy hap-
pens to be the mixture that is purely scalar. Furthermore, for small deviations
from this maximum entropy mixture, the entropy is quadratic in the non scalar
amounts. In a later chapter, when we discuss the natural force between prim-
itive idempotents, we will revisit these observations.

6.4 Schwinger’s Measurement Algebra

In discussing the projection operator that picks out a quantum state of type
a, our notation has been to write ρa. In our notation, this describes both
the fields of the Stern-Gerlach type experiment that allows only that quantum
state to pass, and and also to describe the quantum state itself. In Schwinger’s
notation,[9] we would write this same object as m(a). The choice of notation is
not significant, and to reduce confusion we will stick with the density operator
notation except for these few paragraphs that will place the present effort in
historical context.

In Schwinger’s exposition, he quickly passes from the projection operators
m(a) to symbols that represent Stern-Gerlach filters that alter the beam. For
example, one could arrange for a filter that accepts only spin oriented in the
+z direction, and releases particles with spin oriented in the +x direction.
Schwinger would write such a filter with a more general notation as m(+x,+z).
In this, Schwinger’s notation exceeds what ours is capable of.

Schwinger measurement symbols of the type m(a, b) incorporate a distur-
bance to the quantum state. We reject these for two reasons. First, we want
physical processes to occur when our quantum states are disturbed. Second,
measurement symbols of this type automatically imply an arbitrary choice of
phase.

So long as the two quantum states a and b do not annihilate each other, we
can uniquely define the Schwinger measurement symbol m(a, b) as the product
of the operators:

m(a, b) = ρa ρb. (6.12)

But if the quantum states annihilate each other, the above definition fails. For
example, ρ+zρ−z = 0.

We could avoid the annihilation problem by choosing an intermediate state.
For example, we could write:

m(+z,−z) = ρ+z ρ+x ρ−z, (6.13)
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but the result will be different depending on the choice of that intermediate
state. For example,

ρ+zρ+xρ−z = +0.25(x̂+ îy), but
ρ+zρ−xρ−z = −0.25(x̂+ îy).

(6.14)

In fact we can get any arbitrary phase by judicious choice of the intermediate
state. And furthermore, since spinors carry arbitrary phases, each of these
objects will convert a −z ket to a +z ket.

If the two states, a, and b are chosen at random, it is highly unlikely (i.e.
a set of measure zero) that they will annihilate. Far more likely is that m(a, b)
will be well defined by ρa ρb. From this one might suppose that one could use
the general measurement symbols with little likelihood of problem. However,
the general measurement symbols between annihilating states are precisely the
measurement symbols that the standard way of formulating quantum mechan-
ics finds most useful–they are the raising and lowering operators. Our inability
to define their phases in a unique way is equivalent to the fact that when one
defines Clebsch-Gordon coefficients one must choose arbitrary complex phases.

The Schwinger notation can be made uniquely defined by assuming a vac-
uum state ρ0 that does not annihilate any quantum state. And this is how
Schwinger derives the usual state vector formalism for quantum mechanics from
his measurement algebra. But this book is devoted to the operator formalism,
as opposed to the spinor formalism and we will not assume what Schwinger
refers to in [9] as a “fictitious” vacuum state. This ends our historical digres-
sion, and we now return to the density operator, ρχ, notation.

Given that any physical quantity A (for example, spin) assumes only a finite
number of distinct values, a1, a2, ... an, the following rules apply:

ρaj ρaj = ρaj ,
ρaj ρak = 0, if j 6= k,∑

j ρaj = 1.
(6.15)

The above are identical to the rules that govern a complete set of primitive
idempotents of a Clifford algebra so it is natural that we will use Clifford
algebra to analyze the elementary measurements of Schwinger’s measurement
algebra.

So long as we restrict the physical quantity A to be just spin we have not
gained anything above what we already know. But we can interpret the physical
quantity A as including more than just spin. A could represent any other
complete set of quantum states, where “complete” depends on our context.

We’ve introduced primitive idempotents in a bottom up manner. That
is, we begin with a Clifford algebra, define a complete set of commuting
roots of unity, and from that define a complete set of primitive idempotents.
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Schwinger’s measurement algebra affords a method of defining these objects
from the top down.

For example, if we are concerned with solutions to the Dirac equation for
the electron, we could choose that A includes information about a state’s spin
and charge: {+ze,−ze,+zē,−zē}. With the choice of these four states, the
primitive idempotents would be:

ρ+ze, ρ−ze, ρ+zē, ρ−zē. (6.16)

In most quantum mechanics books, the operator for spin−1/2 in the ±z
direction squares to 1/4, but we will instead define the spin−1/2 operator as
twice the usual definition so it will instead square to 1. This makes S+z a “root
of unity” that we can use to define primitive idempotents, and we can define
the projection operator for spin−1/2 in the ±z directions as

ρ±z = 0.5(1 + S+z). (6.17)

The above two equations can be solved to give S+z in terms of ρ±z:

S+z = ρ+z − ρ−z. (6.18)

Thus we can derive the root of unity from the projection operators of the
Schwinger measurement algebra.

With the choice of primitive idempotents in Eq. (6.16), we can define the
projection operator for spin−1/2 in the ±z direction as:

ρ+z = ρ+ze + ρ+zē,
ρ−z = ρ−ze + ρ−zē.

(6.19)

Applying Eq. (6.18), we derive:

S+z = (ρ+ze + ρ+zē)− (ρ−ze + ρ−zē). (6.20)

The above spin operator, S+z is now defined entirely within the Schwinger
measurement algebra. The rule for obtaining primitive roots of unity from
the Schwinger measurement algebra is to simply add all the eigenstates with
eigenvalue +1, and subtract the state with eigenvalue −1.

Note that when an operator is defined as above, that is, as a sum over
a complete set of states each independently multiplied by ±1, the operator is
automatically a root of unity. When squared, the cross terms will all be zero as
different primitive idempotents annihilate, and the squared terms will convert
the − signs to +. Then this will be a sum over a complete set of primitive
idempotents and so is 1̂.

Thus we have ways of moving back and forth between a Schwinger mea-
surement algebraic description of a set of quantum states (i.e. a list of sets of
observed quantum numbers), and a description of a set of quantum states that
are primitive idempotents of a Clifford algebra. In later chapters we will apply
this technology to the problem of uniquely defining the elementary particles as
composites of primitive idempotents of a Clifford algebra.
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6.5 Clifford Algebra and the SMA

As we add vectors to a Clifford algebra, we get larger numbers of commuting
roots of unity in our complete sets of commuting roots of unity. If there is only
one vector, say x̂, then there is only one root of unity, x̂. In this case, there
are only 2 primitive idempotents, 0.5(1± x̂).

With two vectors, {x̂, ŷ}, we can still only define a single commuting root of
unity. If we choose x̂ the remaining degrees of freedom in the Clifford algebra,
namely {ŷ, x̂y}, all anticommute with x̂ and so we are stuck with only one
commuting root of unity. In this situation, as in the case with only one vector,
there are only 2 primitive idempotents, 0.5(1± x̂).

The Pauli algebra has three vectors, {x̂, ŷ, ẑ}. If we choose x̂ as a commuting
root of unity, the remaining degrees of freedom are {ŷ, ẑ, ŷz, x̂y, x̂z, ŷz, x̂yz}. Of
these, ŷz and x̂yz commute with x̂, but neither of these squares to −1. There-
fore the (real) Pauli algebra defines only two primitive idempotents, 0.5(1± x̂).

On the other hand, if we define a Clifford algebra with the three vectors
{x̂, ŷ, t̂}, we can define two commuting roots of unity, for example, x̂ and ŷt,
and we would have four primitive idempotents, 0.25(1 ± x̂)(1 ± ŷt). So we
see that the number of primitive idempotents that are contained in a Clifford
algebra can depend on its signature.

The Dirac algebra, with vectors {x̂, ŷ, ẑ, t̂} also allows two commuting roots
of unity, for example, x̂ and ẑt, and therefore four primitive idempotents,
0.25(1± x̂)(1± ẑt).

If we add another spatial vector, ŝ, to the Dirac algebra, to get the “proper
time algebra” as was discussed in Sec. (5.4), we can still only write two commut-
ing roots of unity, the same as with the Dirac algebra. To get three commuting
roots of unity we could instead add a second time vector to the Dirac algebra,
t̂′ with (t̂′)2 = −1. Then three commuting roots of unity would be {x̂, ŷt, ẑt′},
and we would have eight primitive idempotents.

Another way to get three commuting roots of unity would be to take the
proper time algebra to be complex rather than real. Then we could have three
commuting roots of unity as {x̂, ŷt, îzs} again giving eight primitive idempo-
tents, that is, 0.125(1 ± x̂)(1 ± ŷt)(1 ± îzs). If ŝ is treated as belonging to a
compact or hidden dimension, then one can consider the complex numbers as
indicating position in the s dimension. But in doing this, one ends up with
two natural geometric imaginary units, i and ̂xyzst, both of which square to
−1 and commute with the geometry.

In any case, if we find M commuting roots of unity, we find 2M primitive
idempotents. Thinking of the M commuting roots of unity as operators, the
2M primitive idempotents are eigenstates with eigenvalues of ±1. For example:

x̂ 0.25(1− x̂)(1 + ŷt) = −0.25(1− x̂)(1 + ŷt), (6.21)
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so 0.25(1− x̂)(1 + ŷt) is an eigenstate of x̂ with eigenvalue −1.
But the M roots of unity commute, so a primitive idempotent generated

by these roots is also an eigenstate of any product of the M commuting roots
of unity. So rather than having the primitive idempotents be eigenstates of M
commuting independent operators, they are more generally eigenstates of 2M

commuting not independent operators. This confusing but simple concept is
best illustrated with an example. The Dirac algebra is just a little too simple
to get the point across, so instead we will use the complex proper time algebra.

Let our commuting roots of unity be {x̂, ŷt, îzs}. A particular primitive
idempotent defined by these roots is:

ρ−+− = 0.125(1− x̂)(1 + ŷt)(1− îzs),
= 0.125(1̂− x̂+ ŷt− îzs− x̂yt+ îxzs− ̂iyzst+ ̂ixyzst). (6.22)

The set of all products of the three commuting roots of unity is the set with
eight elements given by {1̂, x̂, ŷt, x̂yt, îzs, îxzs, ̂iyzst, ̂ixyzst}. Note that these
are precisely the degrees of freedom present in the expansion of ρ−+− above,
Eq. (6.22).

As each degree of freedom is represented in Eq. (6.22) with a plus or mi-
nus sign, so the primitive idempotent ρ−+− is an eigenstate of that degree of
freedom with eigenvalue +1 or −1. Using explicit multiplication, the reader is
invited to verify that ρ−+− is an eigenvalue of these eight commuting roots of
unity with eigenvalues ±1 where the sign is given by the sign in the expansion
of ρ−+−.

Using this principle, one can write down all the eigenvalues of all eight
primitive idempotents ρ±±±:

1̂ x̂ ŷt îzs x̂yt îxzs ̂iyzst ̂ixyzst
ρ−−− +1 −1 −1 −1 +1 +1 +1 −1
ρ−−+ +1 −1 −1 +1 +1 −1 −1 +1
ρ−+− +1 −1 +1 −1 −1 +1 −1 +1
ρ−++ +1 −1 +1 +1 −1 −1 +1 −1
ρ+−− +1 +1 −1 −1 −1 −1 +1 +1
ρ+−+ +1 +1 −1 +1 −1 +1 −1 −1
ρ++− +1 +1 +1 −1 +1 −1 −1 −1
ρ+++ +1 +1 +1 +1 +1 +1 +1 +1

(6.23)

In the above, it should be noted that the signs are somewhat arbitrary in that
−x̂ makes just as good a root of unity as +x̂. For this reason, not much can
be made of the fact that the last row has all +1 eigenvalues.

One of the 2M commuting non independent roots of unity is 1̂, and of course
has trivial eigenvalues of +1 for all primitive idempotents. For the purpose of
classifying quantum states we can ignore this operator. That leaves 2M − 1
good quantum numbers. Each of the other commuting roots of unity has equal
numbers of eigenstates with +1 and −1 eigenvalues. Therefore one has that the
sum of the quantum numbers over all states is zero, a fact that is reminiscent
of the requirement for anomaly cancelation in QFT, but is beyond the scope
of this book.
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Suppose that we have three commuting roots of unity, ι1, ι2, and ι3. The
eight primitive idempotents are 0.125(1 ± ι1)(1 ± ι2)(1 ± ι3). Any of these
eight primitive idempotents has good eigenvalues with respect to any of the
eight operators in the Abelian group generated by the three commuting roots
of unity. The table of eigenvalues will be identical to Eq. (6.23) but we repeat
it here:

1̂ ι3 ι2 ι1 ι1ι2 ι1ι3 ι2ι3 ι1ι2ι3
ρ−−− + − − − + + + −
ρ−−+ + − − + − − + +
ρ−+− + − + − − + − +
ρ−++ + − + + + − − −
ρ+−− + + − − + − − +
ρ+−+ + + − + − + − −
ρ++− + + + − − − + −
ρ+++ + + + + + + + +

(6.24)

written in terms of three generic commuting roots of unity and the eight generic
primitive idempotents they produce.

In standard quantum mechanics, different particles share the same Dirac
equation without any way of distinguishing between them except in the nota-
tion of the physicist. In the standard model, one must anticommute identical
fermion creation operators and the same with identical annihilation operators.
This anticommutation enforces the Pauli exclusion principle. However, if two
fermions are not identical, one commutes their creation and annihilation oper-
ators and there is no Pauli exclusion principle. In the standard formulation,
one keeps track of which fermions are identical or non identical by notation.

In our formulation of quantum mechanics different primitive idempotents
are distinguished not merely by notation, but by having different geometric
values. For this reason, we do not need to rely on notation to keep track of
whether our fermions are identical or not.

Suppose that we have two distinct primitive idempotents in the same com-
plete set of primitive idempotents. These two idempotents annihilate, so their
sum is also idempotent:

(ρ1 + ρ2)2 = (ρ1)2 + ρ1ρ2 + ρ2ρ1 + (ρ2)2,
= (ρ1)2 + (ρ2)2,
= ρ1 + ρ2.

(6.25)

The sum is not primitive so it is not an “elementary particle”, but it is an
idempotent so we can think of it as two elementary particles at the same point
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in space.
On the other hand, if we add two identical idempotents, their sum is not

an idempotent:
(ρ1 + ρ1)2 = 2(ρ1 + ρ1). (6.26)

We will interpret this as the primitive idempotent form of the Pauli exclusion
principle. This book is devoted to discrete degrees of freedom in the operator
formalism of quantum mechanics. The author plans to demonstrate the Pauli
exclusion interpretation in a later book devoted to spatial dependencies and
continuous degrees of freedom.

The set of all possible sums of distinct primitive idempotents in our set
generated by ι1, ι2, and ι3 includes 28 = 256 elements as each of the eight
primitive idempotents can either be included, or not, in the sum. Ouch.

In Sec. (5.3) we saw that velocity is a natural quantum number of a Clifford
algebra. The operator for velocity in the +z direction is ẑt. Let us suppose that
this is ι3, one of the commuting roots of unity. Now the eight primitive idempo-
tents are split into two groups of four each. The set {ρ−−−, ρ−−+, ρ−+−, ρ−++}
are eigenstates of ẑt with eigenvalue −1 while {ρ+−−, ρ+−+, ρ++−, ρ+++} are
eigenstates with eigenvalue +1. These two eigenvalues correspond to movement
in the −z and +z directions, and so composite particles made from primitive
idempotents selected from both these two groups cannot share the same point
in space for longer than an instant.

Furthermore, because we require physics to be equivalent under rotations,
the particles traveling in the −z direction are identical to the particles traveling
in the +z direction and we need only study one of these sorts of particles to
understand the others. Therefore, in this section we will restrict our attention
to primitive idempotents that take a +1 eigenvalue with respect to ẑt. These
are primitive idempotents that are traveling in the same direction. We will call
a group of primitive idempotents that travel together like this a “snuark”, and
they will be needed to classify the elementary fermions. Since there are only 4
primitive idempotents with an eigenvalue for ẑt of +1, there are only 24 = 16
such snuarks and many of them are trivial.

In order to compare with the elementary particles of the standard model,
we need to compile quantum numbers for these sixteen composite idempotents
(snuarks). In the standard model of quantum mechanics, quantum numbers are
obtained as the eigenvalues of operators. We have followed this tradition with
the primitive idempotents, but if we continue the practice in the composite
idempotents we will end up with nonsensical results.

The difficulty arises from the fact that the standard model is built from
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spinors. If one has two distinct particle types and one has spinors for each of
them that are eigenstates of an operator A with two eigenvalues, for example:

A|a1〉 = a1|a1〉,
A|a2〉 = a2|a2〉, (6.27)

then the combined state is also an eigenstate of A, but with an eigenvalue given
by the sum of the individual eigenvalues:

A(|a1〉|a2〉) = (A|a1〉) |a2〉+ |a1〉 (A|a2〉),
= a1(|a1〉|a2〉) + a2(|a1〉|a2〉),
= (a1 + a2)(|a1〉|a2〉).

(6.28)

Therefore, to match the results for spinors, we must add the eigenvalues of the
primitive idempotents that contribute to the composite idempotent.

Earlier, in the expansion of the primitive idempotents, we noted that the
eigenvalue of a primitive idempotent with respect to an operator was given
by the sign of the term in the primitive idempotent’s expansion. When we
add primitive idempotents, these values will add. Therefore, we see that our
technique for assigning eigenvalues to snuarks can be defined more simply than
by just copying the spinor method. The eigenvalue of a snuark is just the
coefficient of the operator in the expansion of the snuark (and we multiply by
2M where M is the number of commuting roots of unity so that the eigenvalues
of a primitive idempotent are ±1).

This concept is important and is less confusing than it may appear. Con-
sider the snuark ρ = ρ+−− + ρ+−+ + ρ+++. What is its quantum number for
ι1? There are two ways to compute. First,

ι1ρ+−− = −ρ+−−,
ι1ρ+−+ = +ρ+−+,
ι1ρ+++ = +ρ+++,

(6.29)

so there are two primitive idempotents with quantum number +1, and one with
quantum number −1. Therefore the answer is −1 + 1 + 1 = +1. But note that
the snuark is not an eigenstate of ι1. Instead, ι1 ρ gives −ρ+−−+ρ+−++ρ+++.

As a second way of finding the eigenvalue of ρ with respect to ι1, we can
expand ρ+−−, ρ+−+, and ρ+++ and add them together:

ρ = ρ+−− + ρ+−+ + ρ+++,
= 0.125(1 + ι3 − ι2 − ι1 + ι2ι1 − ι3ι1 − ι3ι2 + ι3ι2ι1)

+0.125(1 + ι3 − ι2 + ι1 − ι2ι1 + ι3ι1 − ι3ι2 − ι3ι2ι1)
+0.125(1 + ι3 + ι2 + ι1 + ι2ι1 + ι3ι1 + ι3ι2 + ι3ι2ι1)

= 0.125(3 + 3ι3 − ι2 + ι1 + ι2ι1 + ι3ι1 − ι3ι2 + ι3ι2ι1).

(6.30)

Since the coefficient of ι1 in the sum is +1, (after multiplying by 23 = 8
to get rid of the common factor of 0.125) this is the eigenvalue. The other
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eigenvalues can be read off the last line. For example, the eigenvalue of ι3 is
+3, and the eigenvalue of ι3ι1 is +1. Note that while the quantum numbers of
a primitive idempotent are multiplicative, the quantum numbers of a snuark
are not. Instead, since ι3 has the same eigenvalue +1, for these four primitive
idempotents, the eigenvalue of ι1 is the same as the eigenvalue for ι3ι1.

In combining the 4 primitive idempotents ρ+−−, ρ+−+, ρ++− and ρ+++

into sixteen possible snuarks, only some of them are of interest to us. The
snuarks follow the binomial theorem in that there is 1 with no primitive idem-
potents, 4 with exactly one, 6 with exactly two, 4 with three, and 1 with all
four. The one with no primitive idempotent is simply zero and has no inter-
pretation. The four with single primitive idempotents are simply the primitive
idempotents themselves and we already know these well. When all four primi-
tive idempotents are added together the result is 1̂ which will take eigenvalues
of +1 with respect to all operators, and so is not of interest. The four with
exactly three primitive idempotents will carry eigenvalues equal to the negative
of the eigenvalues of the missing primitive idempotent. This could be equally
accomplished by using primitive idempotents and negating the operators so
these four are also not of interest.

The only snuarks of interest are the ones that have two primitive idempo-
tents. Their eigenvalues are as follows:

ρ+++ ρ++− ρ+−+ ρ+−− ι2 ι1 ι21

ρ1100 1 1 +2 0 0
ρ1010 1 1 0 +2 0
ρ1001 1 1 0 0 −2
ρ0011 1 1 −2 0 0
ρ0101 1 1 0 −2 0
ρ0110 1 1 0 0 +2

(6.31)

In the above, we use, ρabcd to designate which of the four primitive idempotents,
(ρ+++, ρ++−, ρ+−+, ρ+−−) are included in the snuark. In a later chapter we
will use these to model the elementary fermions.

6.6 Generalized Stern-Gerlach Plots

The original Stern-Gerlach experiment split a beam of atoms in two. This we
modeled with the two primitive idempotents built from a single root of unity.
More complicated Clifford algebras allow larger numbers of commuting roots of
unity which define larger numbers of primitive idempotents. In this section we
discuss generalized Stern-Gerlach experiments with these more general particle
beams.

With two commuting roots of unity, we have four primitive idempotents.
There are then four primitive Stern-Gerlach filters, and the associated Stern-
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Figure 6.3: Stern-Gerlach experiment that splits a beam of particles ac-
cording to two commuting quantum numbers, ι1 and ι2.

Gerlach experiment will have four outgoing beams instead of just two. See
Fig. (6.3). The choice of the operators ι1 and ι2 is arbitrary. We could have
chosen −ι2 and ι1ι2 and the diagram would look exactly the same. This is
because the eigenvalues of the four primitive idempotents are symmetric with
respect to negation and swapping any two operators:

ι2 ι1 ι2ι1
ρ+−− − − +
ρ+−+ − + −
ρ++− + − −
ρ+++ + + +

(6.32)

That is, no matter which 2 of the operators are chosen out of {±ι2,±ι1,±ι2ι1},
there will be one primitive idempotent which has eigenvalues of (−1,−1), one
which has eigenvalues of (+1,+1), and two with mixed eigenvalues of (−1,+1)
and (+1,−1). No matter which operators are chosen for the Stern-Gerlach
apparatus, the result is the same, a square.

In these Stern-Gerlach experiments, the screen is 2-dimensional, so there is
only room for two operators to be explored on it. This will not prevent our
imagination from exploring Stern-Gerlach experiments with three operators.
Instead of defining the beam splitting by sending the beams to a screen, we
will instead draw the beams as spots in 3-dimensions, with the eigenvalues
giving the coordinates of each spot. If we have three eigenvalues that are all
±1, the spots will fall on the corners of a cube.
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As our first 3-dimensional Stern-Gerlach experiment, we will draw one with
the three non independent operators ι1, ι2, and ι2ι1. Of course these define
only four states, so we will only have four spots instead of the eight that one
might expect from three operators. The resulting 3-dimensional Stern-Gerlach
drawing is shown as Fig. (6.4)
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Figure 6.4: Stern-Gerlach experiment with the three non independent op-
erators, ι1, ι2, and ι2ι1. Spots are labeled with their eigenvalues, ±1, in
the order (ι1, ι2, ι2ι1). The cube is drawn only for help in visualization.

When we assume that the particle beam is traveling in the same direction we
end up eliminating one of the commuting roots of unity from use in describing
the particle type of the beam. This halves the number of primitive idempotents
that we have available for modeling particles. With 3 commuting roots of unity,
we get only 22 = 4 different particles. But if these are all particles, we can
suppose that corresponding to each there is an antiparticle that can be modeled
by the particle traveling backwards in time.

So long as we distinguish between particles and antiparticles, this gives us
back our 23 = 8 different quantum states. In this case, we can use ι1, ι2, and
ι3 as independent operators and our quantum states will occupy the corners of
a cube. We can think of ι3 as an operator that distinguishes between particles
(with eigenvalues of +1) and antiparticles (with eigenvalues of−1). If we choose
ι3 as one of the three operators that define the Stern-Gerlach beam plot, we
will have that the particles make up the four corners of the cube surrounding
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one side, and the other four corners make up the antiparticles.
It is important to realize that the distribution of the primitive idempotent

quantum states on the corners of the cube is very arbitrary in that it depends
entirely on our choice of three independent operators. Rather than choosing
ι1, ι2, and ι3, we can choose any other set of independent operators and we
can choose them in any order. For example, ι1ι2, ι2ι3 and −ι2 are three
independent commuting roots of unity (i.e. operators) and will define a beam
pattern for a Stern-Gerlach experiment. See Fig. (6.5).
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Figure 6.5: Stern-Gerlach plot with the three operators (ι1ι2, ι2ι3, −ι2).
The labels for each corner are the ι1, ι2 and ι3 quantum numbers in order
(ι3, ι2, ι1). The antiparticles have ι3 = −1 and are drawn as hollow

circles.

As a final example of generalized Stern-Gerlach plots, we will plot the six
snuarks whose eigenvalues are shown in Eq. (6.31). Since the eigenvalues of ι1
and ι2 are 0 or ±2, we will divide these eigenvalues by 2 so that they fit more
elegantly in cube form.

It is traditional to have antiparticles carry negative quantum numbers. To
accomplish this, rather than plot the ι1 and ι2 quantum numbers, we will
instead plot ι3ι1 and ι3ι2. Since ι3 will be −1 for the antiparticles, this will
multiply the antiparticle quantum numbers by −1. With the antiparticles, we
will have a total of 12 quantum states to plot. The quantum numbers for the
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six composite particles are:

ρ+++ ρ++− ρ+−+ ρ+−− ι3 ι3ι2/2 ι3ι1/2
ρ1100 1 1 +1 +1 0
ρ1010 1 1 +1 0 +1
ρ1001 1 1 +1 0 0
ρ0011 1 1 +1 −1 0
ρ0101 1 1 +1 0 −1
ρ0110 1 1 +1 0 0

(6.33)

and the quantum numbers for the antiparticles are the negatives of the above.
Note that two of the snuarks, ρ1001 and ρ0110 appear degenerate, but if we also
plotted ι2ι1 (perhaps by adding a 4th dimension to the plot) the degeneracy
would be broken. The resulting 12 particles in 11 spots are shown in Fig. (6.6).
The apparently degenerate particles will be eliminated by energy considerations
in the chapter on Force.
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Figure 6.6: Stern-Gerlach plot of 12 snuarks and their antiparticles. See
Eq. (6.33) for the quantum numbers. The antiparticles have ι3 = −1 and

are drawn as hollow circles.





Chapter 7

Force

Yet sleek with oil, a Force was hid
Making mock of all they did

Ready at the opening hour
To yield up to Prometheus
The secular and well-drilled Power
The Gods secreted thus.

W e need to define a force that will bind together primitive idempotents
in a natural way. Since the elementary fermions are point-like particles,

the force will have to create bound states that act point-like. To arrange this,
we will define the force as a potential energy that defines the total energy of a
set of primitive idempotents that are at the same point in space.

7.1 Potential Energy, Some Guesses

The presence of three generations of elementary particles naturally leads one
to suppose that the higher generations are some sort of excitation of the first
generation. This would explain the hierarchy between generations. However,
experiments measuring the total cross section for e+ ē→ hadrons show that if
there are four generations of elementary particles, the mass of the 4th neutrino
has to be on the order of 10 GeV/c2, which is unnaturally heavy.[19, sec 11.2]
This result argues that there should only be three generations, no more and no
less.

A natural way of obtaining exactly three generations of relatively low mass
particles is to suppose that, to first order, they are a degenerate ground state
and the masses we measure just come from a second order splitting of the
degeneracy. This is the assumption we will make.

Assuming that the elementary fermions are degenerate removes some of
the difficulty of assigning a potential energy as we need only correctly guess
the potential energy in the neighborhood of the degeneracy. There are several
different forms for the potential energy that come to mind and we will discuss
them in this section.

101
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In analyzing the Stern-Gerlach experiments of the previous chapter, we saw
that a primitive idempotent represented three things at once. It represents an
elementary particle. It projects out the portion of the incoming beam that
consists of the elementary particle. And it represents the field configuration in
the Stern-Gerlach filter that separates that elementary particle from all others.
We can treat this last observation as a clue to the form of the potential energy.

Suppose that our universe of particles has only two particles in it, a positive
charged one and a negatively charged one, where “charge” we leave nebulously
defined. Only one Stern-Gerlach experiment exists, one that separates posi-
tively charged particles from negatively charged ones. The two particles are
represented by two primitive idempotents:

ρ+ = 0.5(1 + ĉ),
ρ− = 0.5(1− ĉ), (7.1)

where ĉ is the root of unity, or operator, defining the charge.
There is only one bound state, that consisting of a positively charged par-

ticle and a negatively charged particle. We need a potential energy that will
bind two oppositely charged particles together. As a function, potential energy
needs to be real valued and to give zero only when the two states are opposite
in charge.

In the spinor language, a natural choice for potential energy that meets
these requirements is the probability of transition between the states. That is,
since the two primitive idempotents annihilate, there will be a zero probability
of transition between them. We will write this guess as V1:

V1(A,B) = 〈A|B〉〈B|A〉 = |〈A|B〉|2. (7.2)

n |A〉 is multiplied by an arbitrary phase, 〈A| is multiplied by its complex
conjugate so the above does not depend on the arbitrary spinor phase. We can
rewrite this in operator form by using the trace function:

V1(ρA, ρB) = tr(ρA ρB).

= tr(
(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
),

= a11b11 + a12b21 + a21b12 + a22b22.

(7.3)

The above potential will work well for a more complicated algebra than
one that just allows two oppositely charged particles. We can assume that |A〉
and |B〉 are in the Pauli algebra. In the usual quantum mechanics, the Pauli
exclusion principle would prevent A and B from occupying other than opposite
spin states. Here we instead allow them to occupy arbitrary states and obtain
the Pauli exclusion principle as a result of presuming that the known particles
are all ground states of this potential energy.
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That the energy increases when A and B are not in opposite spin states
fits in well with our intuition. When A and B are distinct particles the Pauli
exclusion principle does not prevent them from occupying the same spin state
and in such cases, one typically finds that the energy is slightly lower when
the two particles are oppositely arranged. An example of this effect is atomic
hydrogen.

To simplify Eq. (7.3), of course we put it into geometric form. To do this,
recall that one converts a 2× 2 complex matrix into geometric form as follows:

a1 = (a11 + a22)/2,
ax = (a12 + a21)/2,
ay = i(a12 − a21)/2,
az = (a11 − a22)/2.

(7.4)

The inverse relations are then

a11 = a1 + az,
a12 = ax + iay,
a21 = ax − iay,
a22 = a1 − az.

(7.5)

Note that in order for our density matrices ρA and ρB must be Hermitian,
and therefore a1, ax, ay, and az are all real. Substituting these relations into
Eq. (7.3) we obtain:

V (A,B) = (a1 + az)(b1 + bz) + (ax + iay)(bx + iby)
+(ax − iay)(bx − iby) + (a1 − az)(b1 − bz),

= 2(a1b1 + axbx + ayby + azbz).
(7.6)

This is exactly what we would obtain if we treated the degrees of freedom of
ρA and ρB as if they were real, Euclidean 4-vectors and defined the potential
energy as the dot product. Thus we see that a potential energy that we defined
as a 4th order function in spinors becomes a tractable 2nd order function in
geometric density operators.

In choosing the potential energy to be the transition probability between
the states we found a reasonable potential energy for two states, but what
we need is a potential energy that can bind together an arbitrary number of
primitive idempotents. To get this sort of object, we can consider summing
together the states to be bound, and define the potential energy as a function
of the sum.

As a first step at putting the potential energy in the form of a summation
of primitive idempotents, let us note that ρ+ + ρ− = 1. Therefore we might
suppose that bound states of primitive idempotents must always sum to unity.
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Then we can define the potential as being the square of the difference between
the sum and unity.

V2(ρA, ρB) =
∣∣ρA + ρB − 1̂

∣∣2 . (7.7)

To define | |2, we simply take the sum of squared magnitudes of the elements
of the matrix. This gives:

V2(ρA, ρB) =
∣∣∣∣( a11 a12

a21 a22

)
+
(
b11 b12

b21 b22

)
−
(

1 0
0 1

)∣∣∣∣2 ,
= |a11 + b11 − 1|2 + |a12 + b12|2

+|a21 + b21|2 + |a22 + b22 − 1|2.

(7.8)

To simplify the above, we again use Eq. (7.5) to put it into geometric form.
Remembering that a1, ax, ... bz are all real we have:

V2(ρA, ρB) = |a1 + az + b1 + bz − 1|2 + |ax + iay + bx + iby|2
+|ax − iay + bx − iby|2 + |a1 − az + b1 − bz − 1|2,

= (a1 + b1 + az + bz − 1)2 + 2(ax + bx)2 + 2(ay + by)2

+(a1 + b1 − az − bz − 1)2,
= 2(a1 + b1)2 + 2(ax + bx)2 + 2(ay + by)2 + 2(az + bz)2

−4(a1 + b1) + 2,
= 2(a2

1 + a2
x + a2

y + a2
z) + 2(b21 + b2x + b2y + b2z)

+4(a1b1 + axbx + ayby + azbz)− 4(a1 + b1) + 2.
(7.9)

For a normalized primitive idempotent, a1 = 0.5, and a2
x + a2

y + a2
z = 0.25, so

the above can be considerably simplified:

V2(ρA, ρB) = 2(0.25 + 0.25) + 2(0.25 + 0.25)
+4(a1b1 + axbx + ayby + azbz)− 4(0.5 + 0.5) + 2,

= 4(a1b1 + axbx + ayby + azbz).
(7.10)

Comparing with Eq. (7.6), we see that V2(A,B) = 2V1(A,B). In other words,
these two very different approaches to the potential energy gave identical po-
tential energies, except for a scaling factor.

Another way of defining the potential energy is to suppose that there is
some sort of statistical mechanical basis underlying quantum mechanics, and
use the entropy function defined in Eq. (6.8). We suppose that the potential
energy is minimized when the entropy is maximized so we need a minus sign
to get a guess at an energy function:

V3(ρA, ρB) = k tr((ρA + ρB) ln(ρA + ρB)) 1st guess. (7.11)

The entropy is written under the assumption that ρ is normalized in the usual
quantum mechanical way, that is, that tr(ρ) = 1. For the Pauli algebra,
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this means that ρ = 0.51̂. Following the hint provided by the Stern-Gerlach
operators, we need a potential energy V3(ρA + ρB) that is minimized when
ρA + ρB = 1̂.

In addition, in terms of geometry, the trace, when applied to the matrix rep-
resentation of a Clifford algebra element, picks out the scalar part. Therefore,
to convert the entropy formula into a potential energy we must write:

V3(ρA, ρB) = V3(ρA + ρB) = k 〈0.5(ρA + ρB) ln(0.5(ρA + ρB))〉0, (7.12)

where 〈 〉0 is the notation for the picking out of the scalar part. Since
the entropy is maximized when ρ = 0.51̂, the above will be minimized when
ρA + ρB = 1̂.

Since we are assuming that the potential energy is of the order of the Planck
mass, we need only worry about small perturbations around the minimum. As
before, ρA = 0.51̂+axx̂+ay ŷ+az ẑ and similarly for ρB . “Small perturbations”
means that ax + bx is very small, and similarly for y and z so:

ρA + ρB = 1̂ + (ax + bx)x̂+ (ay + by)ŷ + (az + bz)ẑ, (7.13)

where all the coefficients but the first are very small. We write: ρA+ρB = 1+δ.
Putting this into Eq. (7.12) and keeping up to second order terms gives:

V3(ρA, ρB) = k 〈(1̂ + 0.5δ) ln(0.5(1̂ + 0.5δ))〉0,
= k 〈(1 + 0.5δ)(ln(0.5) + ln(1 + 0.5δ))〉0,
= k 〈(ln(0.5) + ln(1 + 0.5δ)) + 0.5δ(ln(0.5) + ln(1 + 0.5δ))〉0,
= k 〈(ln(0.5) + 0.5δ − 0.5δ2 + 0.5δ ln(0.5) + 0.25δ2)〉0,
= k 〈(ln(0.5) + 0.5δ(1 + ln(0.5))− 0.25δ2).

(7.14)
Note that the 〈 〉0 keeps only the scalar part and δ is purely vector. Therefore
the above reduces to:

V3(ρA, ρB) = k (ln(0.5)− 0.25δ2),
= k (ln(0.5)− 0.25((ax + bx)2 + (ay + by)2 + (az + bz)2)),
= k (ln(0.5)− 0.25(a2

x + a2
y + a2

z + b2x + b2y + b2z)
+0.5(axbx + ayby + azbz)),

= k (ln(0.5)− 0.125− 0.5(axbx + ayby + azbz)),
= k (ln(0.5)− 0.5(a1b1 + axbx + ayby + azbz)).

(7.15)
The 0.5 ln(0.5) is just an additive constant. The rest of the potential energy is
simply a multiple of the same potential energy we obtained for V1 and V2.

7.2 Geometric Potential Energy

The transition probability V1 is difficult to generalize to n primitive idempo-
tents. Entropy, V3 has the disadvantage of having a logarithm. And V2 is
written for two particles only. But with these as clues, we can make a fourth
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guess:

V4(ρA, ρB , ...ρχ) = (ax+bx+...+χx)2 +(ay+by+...+χy)2 +(az+bz+...+χz)2.
(7.16)

That is, we sum the primitive idempotents, and calculate a squared magnitude
that includes everything but the scalar part. When the primitive idempotents
sum to a scalar, this gives a potential energy of zero which is the minimum.

For a Clifford algebra larger than the Pauli algebra, we can extend the sum
on the right to include the rest of the non scalar degrees of freedom. But in the
above we are assigning different relative weights to the scalar and vector com-
ponents, should we also assign differing weights to the bivector components?

If we were not assuming that the elementary particles are states with zero
energy, the natural interpretation of their different energies would be that they
give their respective masses. So to break the degeneracy, we can rewrite V4 so
that the scalar part of the sum does contribute to the potential energy. This
will still keep the particles as near degenerate in energy, but will allow us to
model the masses of the elementary particles.

Writing the potential energy with different weights for the scalar and non
scalar parts raises the question of how we should assign weights for all the vari-
ous non scalar parts. The most complicated Clifford algebra we are considering
is C(4, 1), the complex algebra generated by x̂, ŷ, ẑ, ŝ and t̂ where only the
last has negative signature. This Clifford algebra has 32 complex degrees of
freedom or 64 real degrees of freedom.

Assuming that we give the potential energy full freedom to vary over the 32
complex degrees of freedom, we can write V using 32 possibly different weights,
vχ:

V (a11̂ + axx̂+ ay ŷ + ...+ axyzst ̂xyzst),
= V (a11̂) + V (axx̂) + V (ay ŷ) + ...+ V (axyzst ̂xyzst),
= v1|a1|2 + vx|ax|2 + vy|ay|2 + ...+ vxyzst|axyzst|2.

(7.17)

We need to choose the 32 real values, vχ, a task which appears formidable.

The various degrees of freedom for a Clifford algebra are related by multi-
plication. For example, x̂y = x̂ŷ. It is therefore natural to write the potential
energy function as a multiplicative function. For example:

vxyzst = vx vy vz vs vt. (7.18)
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This means that instead of defining 32 real values, we need only define 5, and
of those, it is natural to choose the spatial potentials as:

vx = vy = vz = vs. (7.19)

The scalar potential for 1̂ has to be the multiplicative identity:

V (1̂) = v1 = 1. (7.20)

Then we can write the potential V completely in terms of vs and vt. An
example potential energy calculation:

V (ρ) = V (0.25(1̂ + ẑt)(1̂− ŝ)),
= V (0.25(1̂ + ẑt− ŝ+ ẑst)),
= |0.25|2 + vsvt|0.25|2 + vs|0.25|2 + v2

svt|0.25|2,
= 0.0625(1 + vsvt)(1 + vs).

(7.21)

Thus we can write potential energies as polynomials in vs and vt that factor
the same way as primitive idempotents factor into idempotents.

The leptons are observed as free particles but the primitive idempotents
described in this book do not. In order for this to be a result of energy consid-
erations, we need to have the energies of a typical scalar be much smaller than
the energy of a typical primitive idempotent. For example,

V (1̂) << V (0.25(1̂ + ẑt)(1̂− ŝ)), or
1 << 0.625(1 + vsvt)(1 + vs).

(7.22)

The easy way to achieve this is to assume that vs and vt are much greater than
1, but we do not need to assume that these are the same.

The potential energy function defines a map from any element of the Clif-
ford algebra to the non negative reals. In particular, it is multiplicative on a
substantial number of the commuting roots of unity. For example:

V ( ̂ixyzt) = vxvyvzvt,

= V (îxy) V (ẑt).
(7.23)

As we saw in the chapter on Primitive Idempotents, a set of commuting roots
of unity form an Abelian group. Without having defined the potential, we
had no way of preferring one way of generating the group from another. For
example, one could write an idempotent in either of these equivalent ways:

0.25(1 + îxy)(1 + ẑt),
0.25(1 + îxy)(1 + ̂ixyzt), (7.24)
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The equivalence boils down to the fact that the Abelian group of commut-
ing roots of unity, {1, îxy, ẑt, ̂ixyzt} can be generated by either {îxy, ẑt} or
{îxy, ̂ixyzt}.

Let us work on understanding the potential energy structure of the com-
muting roots of unity of the most complicated Clifford algebra we have con-
sidered, C(4, 1). Since ̂ixyzst squares to +1 and commutes with everything, it
must be included. It remains to choose two independent roots of unity. Here,
“independent” means with respect to ̂ixyzst. For example, îxy and ẑst are
not independent since they multiply to give ̂ixyzst. Because multiplication bŷixyzst will have the effect of changing the number of vectors in a root of unity
from q to 5 − q, without loss of generality we can suppose that the two roots
of unity we add to ̂ixyzst will have 2 or fewer vectors.

Since two vectors anticommute, we cannot add two roots of unity that are
both made from one vector such as x̂ or ŷ. And if the two roots we add both
have two vectors, for example îxy and ẑt, then the only way they can commute
is if they share no vectors. In that case, their product will have four distinct
vectors, and the product of that with ̂ixyzst will have only one vector, in this
case ŝ. So we need only consider the cases where we add a vector and a bivector.
For these to commute, they can share no vectors.

Keeping track only of the only time vector, t̂ and the four space vectors in
no particular order, â, b̂, ĉ, and d̂, the only possible choices for a complete set
of independent commuting roots of unity are the following:

{ît, îab, îcd},
{â, îbc, d̂t}.

(7.25)

That is, either ît is used as a root of unity, or it is in one of the generating
roots. Since we will be wanting our primitive idempotents to be eigenstates of
velocity, such as ẑt, we take the second case.

Writing out the full set of 8 commuting roots of unity, we can read off the
potential energies of the operators:

1̂ îab îcd âbcd ît îabt îcdt ̂ixyzst
1 v2

s v2
s v4

s vt vtv
2
s vtv

2
s vtv

4
s

(7.26)

If vs < vt, then the smallest potential energy is vtvs. Otherwise, it is, v2
s . But

in any case, the largest contribution has to be from the ̂ixyzst term.

7.3 Snuarks as Bound States

The fact that ̂ixyzst is the largest contribution to the energy of a primitive
idempotent suggests that they will be deeply bound together in order to cancel
this contribution. In order to describe the ways that this can happen, let’s
specialize to primitive idempotents traveling in the +z direction.

In order to travel in the +z direction, the primitive idempotents must carry
a factor of (1̂ + ẑt) as was described in Sec. (5.3). In order for their sum to
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cancel the ̂ixyzst term, we can add two primitive idempotents, one with a
factor of (1̂ + ̂ixyzst), the other with a factor of (1̂ − ̂ixyzst). There remains
one primitive idempotent to specify, it is generated by a commuting root of
unity that must commute with ẑt. Of course anything commutes with ̂ixyzst.

The stuff that commutes with ẑt is generated by the four elements {ŝ, x̂,
ŷ, ẑt}. Somewhat arbitrarily, we will assume that the third commuting root
of unity is ŝ. We could, for example, have chosen ̂ixyzt or îxy, but these have
higher potential energy than ŝ.

We can suppose that the primitive idempotents bound by the cancelation
of ̂ixyzst can have either eigenvalue with respect to ŝ. The four primitive
idempotents that we will consider the binding potential on are therefore:

ρz−− = 0.125(1 + ẑt)(1− ŝ)(1− ̂ixyzst),
ρz−+ = 0.125(1 + ẑt)(1− ŝ)(1 + ̂ixyzst),
ρz+− = 0.125(1 + ẑt)(1 + ŝ)(1− ̂ixyzst),
ρz++ = 0.125(1 + ẑt)(1 + ŝ)(1 + ̂ixyzst),

(7.27)

Multiplying these out we have:

ρz−− = 0.125(1 + ẑt− ŝ− ̂ixyzst+ ẑst+ îxys− ̂ixyzt− îxy),
ρz−+ = 0.125(1 + ẑt− ŝ+ ̂ixyzst+ ẑst− îxys+ ̂ixyzt+ îxy),
ρz+− = 0.125(1 + ẑt+ ŝ− ̂ixyzst− ẑst+ îxys+ ̂ixyzt+ îxy),
ρz++ = 0.125(1 + ẑt+ ŝ+ ̂ixyzst− ẑst− îxys− ̂ixyzt− îxy),

(7.28)

The potential energy of the above four primitive idempotents are identical,
(1+vtvs)(1+vs)(1+v2

s)/64. For large vs and vt, this will be dominated by the
vtv

4
s term. There are four combinations whose sums cancel the ̂ixyzst term:

ρz−−+ρz−+, ρz−−+ρz++, ρz+−+ρz−+, ρz+−+ρz++. These are the snuarks.
There are four of them for primitive idempotents traveling in the +z direction.

Because there are only three commuting roots of unity, these four snuarks
are all that we can define that cancel ̂ixyzst. We will now continue with an
analysis of the quantum numbers of the snuarks. To do this, we first explicitly
write out the snuarks:

ρz−− + ρz−+ = 0.25(1 + ẑt− ŝ+ ẑst),
ρz+− + ρz++ = 0.25(1 + ẑt+ ŝ− ẑst),

ρz−− + ρz++ = 0.25(1 + ẑt− ̂ixyzt− îxy),
ρz+− + ρz−+ = 0.25(1 + ẑt+ ̂ixyzt+ îxy).

(7.29)

The four snuarks naturally group into two pairs, according to which degrees of
freedom they have not canceled out.
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All four snuarks have a ẑt term and are therefore eigenstates of velocity.
The top two have a ±ŝ term and are therefore eigenstates of ŝ with eigenvalues
of ±1. But the bottom two have no ŝ terms; but since they are made from
primitive idempotents that are eigenstates of ŝ, as composite states, they are
still eigenstates of ŝ but have eigenvalues of zero.

The primitive idempotents of the snuarks were made from three commuting
roots of unity and therefore have eight quantum numbers. These are inherited
by the snuarks as follows:

1 ẑt îxys ̂ixyzst ŝ ẑst ̂ixyzt îxy
ρz−− + ρz−+ 2 2 0 0 −2 +2 0 0
ρz+− + ρz++ 2 2 0 0 +2 −2 0 0
ρz−− + ρz++ 2 2 0 0 0 0 −2 −2
ρz+− + ρz−+ 2 2 0 0 0 0 +2 +2

(7.30)

The first four columns have identical, and therefore uninteresting quantum
numbers. The remaining four columns are each has the same structure. Two
of the snuarks take zero quantum numbers, the other two take ±2. Later we
will interpret this pattern as defining the structure of the leptons, that is, a
doublet and two singlets. The four snuarks will be interpreted, after a rotation
by the Weinberg angle, as the left and right handed electron and neutrino.

Note that if instead of using C(4, 1) we were using the Dirac algebra, we
would have exhausted our commuting roots of unity at ẑt and ̂ixyzt. Instead
of having a list of four primitive idempotents as in Eq. (7.28), we would have
a list of only two, and these two would combine in only one way. Thus instead
of having four snuarks, we would have only one. This is not enough snuarks
to produce the standard model fermions. In particular, it would not reproduce
the structure of doublet and two singlets that characterizes weak isospin.

The snuarks defined above are composed of 2 primitive idempotents each
and eliminate the ̂ixyzst degree of freedom. One can eliminate yet more higher
degrees of freedom by adding together all four primitive idempotents:

ρzDM = ρz−− + ρz−+ + ρz+− + ρz++,

= 0.5(1 + ẑt).
(7.31)

This eliminates everything but the ẑt non scalar degree of freedom. We will
associate this snuark with dark matter, hence the abbreviation ρDM .

The electrons and neutrinos couple to the photon, W± and Z0. We will
associate these interactions with the degrees of freedom and quantum numbers
of the four regular matter snuarks shown in Eq. (7.29) and Eq. (7.30). These
degrees of freedom are absent in ρDM , and the quantum numbers of ρDM for
these operators are zero. Therefore matter built from ρDM will not participate
in electroweak interactions. This is compatible with the characteristics of dark
matter postulated by the astronomers.
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This book is primarily about the standard model and therefore standard
matter. We will not discuss dark matter and ρDM further in this book. The
topic is attractive as a research area. For example, one might suppose that big
bang produced large numbers of primitive idempotents and that these primitive
idempotents united together to produce standard snuarks and dark matter
snuarks.

Now it is known that standard matter does not decay at an appreciable
rate into dark matter. Therefore one might suppose that after the standard
snuarks have condensed into standard matter, the ratio of standard snuark to
dark matter snuark will be frozen, and therefore the present ratio of standard
matter to dark matter will be determined by statistical mechanics and the
following reversible reactions:

(ρz−− + ρz−+) + (ρz+− + ρz++) < − > ρDM ,
(ρz−− + ρz++) + (ρz+− + ρz−+) < − > ρDM .

(7.32)

That is, the density of the four species of standard matter might be related
to the density of dark matter through the usual chemical potential. From this
point on, when we refer to “snuark”, the reader can assume that we mean
standard matter snuarks unless we specify otherwise.

7.4 Binding Snuarks Together

To bind together snuarks into elementary fermions, we need to cancel off the
remaining non scalar terms in Eq. (7.29). We saw how the dark matter snuark
ρDM canceled these degrees of freedom the easy way. Now let us consider how
to do it the hard way. We will consider the first two snuarks, that is, the
(ρz−− + ρz−+) and (ρz+− + ρz++). For convenience, we repeat their values
here:

ρz−− + ρz−+ = 0.25(1 + ẑt− ŝ+ ẑst),
ρz+− + ρz++ = 0.25(1 + ẑt+ ŝ− ẑst).

(7.33)

The other pair of snuarks can be treated similarly.
Since the snuarks contain a +ẑt degree of freedom, to cancel this we need

to add a snuark that will contain a −ẑt degree of freedom. Such a snuark will
travel in the −z direction instead of the +z direction. This is good because we
will eventually need to construct stationary matter, and having components
that move in opposite directions is necessary.

While a primitive idempotent contains 8 degrees of freedom, it is generated
by only three choices of quantum numbers. This says that the degrees of
freedom of a primitive idempotent are not independent. When we change one
quantum number, in this case, ẑt, we change four degrees of freedom. The
oriented degrees of freedom change sign, the unoriented ones do not.

Similarly, changing the sign of ẑt changes the sign of two of the degrees of
freedom of the snuarks. We will follow the crystallographer’s convention and
use z̄ to designate a snuark oriented in the −z direction. Then the two (of
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interest) snuarks with −1 quantum numbers for ẑt are:

ρz̄−− + ρz̄−+ = 0.25(1− ẑt− ŝ− ẑst),
ρz̄+− + ρz̄++ = 0.25(1− ẑt+ ŝ+ ẑst).

(7.34)

We have four snuarks (i.e. the two in Eq. (7.33) and the two in Eq. (7.34) )
that we want to combine into a scalar. Let’s suppose that we will have A, B,
C, and D portions of each. This sets up a matrix equation. Ignoring the scalar
component, the requirement that the non scalar degrees of freedom add to zero
gives us:  +1 +1 −1 −1

−1 +1 −1 +1
+1 −1 −1 +1




A
B
C
D

 =

 0
0
0

 (7.35)

This set of equations has only one solution, A = B = C = D = 1. Thus we
must have all four snuarks contribute in order to get a scalar.

If we suppose that the two snuarks that travel in the +z direction are
present at the same time, then these two snuarks will simply add to ρDM and
we will be making dark matter. Therefore, to avoid the dark matter solution,
we have to assume that these snuarks are not present at the same time. In
other words, we will have to include these two as a linear superposition.

To move further with this idea requires that we have a better understanding
of what the mass interaction is, and how a left handed particle changes into
a right handed one. This we postpone until the chapter on mass. For now,
let us ignore the issue of how snuarks change themselves into different snuarks
(and so change direction and various quantum numbers) and instead review
the general idea of how a particle with mass is built from particles that travel
at speed c.

7.5 The Feynman Checkerboard

Each snuark consists of two primitive idempotents that travel together, in the
same direction at speed c. Traveling in pairs allows the elimination of the
largest contribution to potential energy, the ̂ixyzst term. But in order to
get a massive fermion that is able to remain stationary, we need to combine
enough snuarks that the rest of the non scalar terms can be canceled. These
cancelations will be obtained by adding together snuarks that travel in different
directions and have different quantum numbers.

This concept is not entirely alien to particle physics. Richard Feynman
came upon a similar idea when he was attempting to understand the nature
of the Dirac equation. He was able to get the one dimensional Dirac equation
by assuming that the electron moved back and forth, always at speed c, that
it changed directions at random, and that each time it changed directions its
wave function was multiplied by a complex constant.

The idea is known as the “Feynman Checkerboard”, or sometimes chess-
board, in reference to how the paths look when drawn on a 1 + 1 space-time
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diagram. The idea was originally presented as a problem in the book on the
path integral by Feynman and Hibbs. A search of the internet finds quite a
few articles on the subject. The first I found, not necessarily the best, are [20],
[21], [22], [23]. When one tries to generalize the Feynman checkerboard model
to 3+1 dimensions, an issue that arises is that the speed of the particle making
the motion wants to be c

√
3. This problem is discussed in Peter Plavchan’s

excellent term paper.[24] For the moment we will ignore this issue. We will
return to it in a later chapter.

A primary objective of this paper is to derive relationships between the
masses of the leptons. Particle masses are the energy of the stationary, or non
moving, particle. Therefore, we will be concentrating on particles which have
no net motion. To generalize to particles that are moving, one simply takes
appropriate linear superpositions. This will be the subject of a book to be
written by the author after the completion of the present one.

The Feynman checkerboard consists of a particle moving left and right in
1-dimensional space. In our concept of this, we will replace the left going
particle with three snuarks oriented in the +x, +y, and +z directions, and
we will replace the right going particle with three snuarks oriented in the −x,
−y, and −z directions. At the points where the left going particle turns into
a right going particle, we will instead have three snuarks changing form into
three other snuarks. This will require considerably more machinery than that
used in previous Feynman checkerboard models, but our machinery is stronger
than that used previously.

In changing from one snuark form to another, spin is conserved. This gives
us a hint on how to interpret the various operators as spin. Returning to the
snuark quantum numbers, note that in Eq. (7.30) all four snuarks shared the
same non zero quantum number for ẑt. We will interpret this as a precursor
to spin, a sort of “pre-spin” in the +z direction. Pre spin in the other three
directions is therefore:

Sx = x̂t,

Sy = ŷt,

Sz = ẑt.

(7.36)

These three operators multiply to produce:

SxSySz = x̂t ŷt ẑt,

= x̂yzt,
(7.37)

which does square to −1 as expected for the imaginary unit of the Pauli algebra.
In addition, since − ̂ixyzt = ŝ ̂ixyzst and ŝ and ̂ixyzst are two of the

commuting roots of unity, then so is − ̂ixyzt, and multiplying this by i still
leaves an operator that commutes with the rest of the primitive idempotent.
Therefore x̂yzt will act just like an imaginary unit. One can then verify
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that SxSy = x̂yztSz and cyclic permutations. This completes the proof that
{x̂t, ŷt, ẑt} can be interpreted as a set of SU(2) spin operators. Note that our
choice of ŝ was not required for all this to happen. The various other possible
choices would have led to analogous results.

7.6 Adding Mass to the Massless

The standard model is founded on symmetry, while this book is founded on
geometry. The most important symmetry is energy, and the standard model
uses a Lagrangian or Hamiltonian density to specify particle interactions. The
simplest way to add mass to a massless quantum field theory is simply to add a
term that annihilates a right handed particle and creates a left handed particle,
with the coupling constant being the mass itself, in addition, an additional
term, the Hermitian conjugate, is assumed but is sometimes not mentioned.
For example, with the electron, one has a mass term in the Lagrangian as
follows:

mēLeR + h.c. = mēLeR +mēReL, (7.38)

where “h.c.” stands for “Hermitian conjugate”.
But the standard model uses a gauge principle to define the forces between

the elementary fermions and this principle is incompatible with the above sim-
ple method of giving mass. Instead, one requires a scalar Higgs field that
couples to the left and right handed fields. The gauge principle, like energy, is
also a symmetry, and this is in keeping with the fact that the standard model
is built on principles of symmetry. Unfortunately, some of the symmetries are
not exact, so the standard model assumes that the symmetry is broken.

The method used to break symmetry requires the assumption that the
vacuum of the physical world has less symmetry than the particles possess. The
result is a theory that is complicated, difficult, and while it does explain many
experiments, it creates large numbers of constants that can only be determined
by experiment. In the operator formalism, there is no vacuum and this method
of modeling the elementary particles is not available.

Since we must break with the standard model over the existence of the
vacuum, we cannot logically follow the standard model in how mass is defined.
Thus the natural inclination is to abandon the Higgs mechanism and pursue
the simpler method of giving masses to fields, that is, with terms in the field
theory such as Eq. (7.38).

It is the author’s intention, after this book is complete, to write a book
devoted to momentum and energy from a geometric operator point of view.
However, let us briefly poach on the territory of that second book and derive
the massive electron propagator from the massless propagators and the above
Feynman diagrams. The justification for taking this material out of turn is that
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it will motivate a generalization that is necessary to explain the structure of
the elementary fermions. We will also use the idea to produce formulas relating
the masses of the leptons.

In the standard model, the principle of symmetry is at the foundation. In
rejecting this and instead assuming that geometry is fundamental we are re-
leased from slavishly copying all the methods of deduction used in the standard
model, but at the same time, we can take advantage of the well tested calcu-
lational methods of the standard model. Methods of calculation are agnostic
with respect to symmetry versus geometry.

The standard model begins with a free Lagrangian. One then perturbs this
Lagrangian by adding interaction terms. Calculations are simplified by the
use of Feynman diagrams. In turning this method of calculation on its head,
we will instead suppose that it is the Feynman diagrams themselves that are
physical, and the Lagrangian just a mathematical convenience. This will free us
from having to assume broken symmetries when our mathematical convenience
turns out to not be perfectly symmetric.

The mass term of Eq. (7.38) has no Feynman diagrams associated with it.
The mass term is part of the unperturbed field theory which can be solved
exactly. However, since we have cut loose from the anchor of symmetry, we
can treat the mass term as if it were a perturbation of a massless theory, and
write down the Feynman diagrams that it would imply.

The two mass terms produce two Feynman diagrams. The first converts a
right handed particle to left handed, the second converts the opposite way:

RF
−im

L

E ,
LF
−im

R

E (7.39)

The above two Feynman diagrams change the propagators from left handed to
right handed. If we had chosen a different signature, etc., we would have to
use a different coupling constant. The −i is purely mathematical as the above
is not a geometric theory.

Let KLL be the propagator for an electron that begins and ends its journey
as left handed, KRL be one that begins right handed and ends left handed,
etc. We need to derive these propagators from the massless propagators and
the above Feynman diagrams. Fortunately, the above Feynman diagrams are
supremely simple and can be easily resummed. We begin with KLL:

KLL =
L

E +
L

ERD
L

E +
L

ERD
L

ERD
L

E ... (7.40)

From now we will leave off the coupling constants; there is one at each vertex
and they are all −im. The above series of Feynman diagrams sum to:

KLL =
(
−1
/p

)
+
(
−1
/p

) (−im
1

) (−1
/p

) (−im
1

) (−1
/p

)
+ ...

=
(
−1
/p

)(
1 +

(−im
1

) (−1
/p

) (−im
1

) (−1
/p

)
+ ...

)
= −1

/p

(
1− m2

p2 + m4

p4 −
m6

p6 + ...
)

= −1
/p

(
p2

p2+m2

)
= −/p

p2+m2 ,

(7.41)
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Similarly for the series that begin and end with right handed propagators:
KRR = −/p/(p2 +m2).

The Feynman diagrams that begin with left handed propagators and end
with right handed propagators sum as follows:

KLR =
L

ERD +
L

ERD
L

ERD +
L

ERD
L

ERD
L

ERD ...

=
(
−1
/p

) (−im
1

) (−1
/p

)
+

+
(
−1
/p

) (−im
1

) (−1
/p

) (−im
1

) (−1
/p

) (−im
1

) (−1
/p

)
+ ...

=
(
−im
p2

)(
1− m2

p2 + m4

p4 −
m6

p6 + ...
)

= −im
p2+m2 ,

(7.42)

and similarly for the right to left handed propagators: KRL = −im/(p2 +m2).
In the standard model, the left and right handed electron are combined

into a single particle. This single particle can be split back into its left and
right handed parts using projection operators. What we’ve found above are
the projections of the propagators in their left and right handed forms. In
addition, we’ve computed only the electron propagators. The positron terms
will be similar.

To assemble KLL, KLR, KRL and KRR into a single, massive, propagator,
it is natural to choose a representation. Our choice of representation will also
be used to define the gamma matrices that are implicit in /p and so these choices
will interact. But regardless of the representation, when we define the electron
propagator to be the propagator of a particle that has left and right components
and includes both particle and antiparticle, we will end up with a composite
(i.e. massive) propagator that includes the sums we have found:

K = (−/p− im)/(p2 +m2). (7.43)

The above can be discussed at length, with more care and detail, and the
result will be the same. The point is that the massive Dirac propagator can
be derived from massless Dirac propagators and the resumming of two simple
Feynman diagrams.

7.7 A Composite Checkerboard

The previous two sections gave two similar methods of giving mass to massless
particles. The Feynman checkerboard of Sec. (7.5) worked only in 1+1 dimen-
sion, but it was elegant and simple. The left going and right going particles
would be eigenstates of velocity which makes for a consistent and simple ge-
ometrization using Clifford algebra. The two Feynman diagrams of Sec. (7.6)
worked in 3+1 dimensions and was elegant and simple, but it assume massless
Dirac propagators and these are not simple geometric objects.

In this section, we combine the two ideas into one which takes advantage
of the best parts of each. We will use the Feynman checkerboard technique of
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the earlier section so that we can use primitive idempotents to define the sub-
particles, and we will use the Feynman diagram technique of the later section
so that we will turn the problem into one of a resummation.

For simplicity, we will replace the snuarks with primitive idempotents and
use L and R just as labels to arbitrarily distinguish between left and right
handed particles without assuming any difference in quantum numbers. This
will simplify the problem considerably. We will return to the physical problem
of the quarks and leptons in the next chapter.

In the first part of this chapter we showed how primitive idempotents could
be bound together as snuarks. A snuark is an eigenstate of velocity and this
limits how well it can minimize its energy. To reduce its energy to below the
order of the Planck mass, snuarks must combine together in ways that involve
velocities traveling in different directions. This is exactly the topic of the
Feynman checkerboard model and the resummation of massless propagators to
massive.

Pairs of primitive idempotents come equipped with a natural probability,
the familiar:

P (A→ B) = 〈A|B〉〈B|A〉,
= tr(ρA ρB). (7.44)

Unfortunately for the Feynman checkerboard model, the above gives zero when
ρA and ρB are oriented in opposite directions.

We could always assume that gravity is a force that violates the above
assumption. But we would still only have the Dirac propagator in 1 + 1
dimensions. Instead, we will assume that the above is true, that the usual
0.5(1 + cos(θ)) probability rule for spin-1/2 states oriented in directions sepa-
rated by an angle θ, does apply.

In making this assumption, it becomes impossible for a primitive idempo-
tent to “turn on a dime”. A primitive idempotent oriented in +z, that is, one
that carries a +ẑt quantum number, cannot transform immediately into one
with a −ẑt quantum number. It can, however, go to ±x̂t or ±ŷt.

Therefore, we will assume that the mass interaction forces the bound states
of primitive idempotents to involve all six orientations:

x̂t ŷt ẑt
ρx +2 0 0
ρy 0 +2 0
ρz 0 0 +2
ρx̄ −2 0 0
ρȳ 0 −2 0
ρz̄ 0 0 −2

(7.45)

In the above we have included only the orientation quantum number. The
other quantum numbers add to the confusion, but our analysis will cover them
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as well (in later chapters). But our analysis will be precise for the dark matter
snuarks, ρDM , which have no other quantum numbers.

We can write down a table showing the probabilities for primitive idempo-
tent transformations from one orientation to another:

ρx ρy ρz ρx̄ ρȳ ρz̄
ρx 1 0.5 0.5 0 0.5 0.5
ρy 0.5 1 0.5 0.5 0 0.5
ρz 0.5 0.5 1 0.5 0.5 0
ρx̄ 0 0.5 0.5 1 0.5 0.5
ρȳ 0.5 0 0.5 0.5 1 0.5
ρz̄ 0.5 0.5 0 0.5 0.5 1

(7.46)

In the above, again, we have ignored other quantum numbers.
If the mass interaction changed only the orientation quantum number of

the primitive idempotents, the above table of probabilities would apply. We
do not specify the mass interaction, Nature does, and it does not leave the
other quantum numbers unchanged. Therefore, we have to divide the list of
orientations into at least two groups. We will distinguish these with L and R,
and the transition probabilities will be zero inside either one of these groups.

Arbitrarily putting the L into the +x, +y, and +z orientations, the prob-
ability table looks like:

ρxL ρyL ρzL ρx̄R ρȳR ρz̄R
ρxL 0 0 0 0 0.5 0.5
ρyL 0 0 0 0.5 0 0.5
ρzL 0 0 0 0.5 0.5 0
ρx̄R 0 0.5 0.5 0 0 0
ρȳR 0.5 0 0.5 0 0 0
ρz̄R 0.5 0.5 0 0 0 0

(7.47)

The above can be obtained by postulating that three left handed primitive
idempotents transform to right handed primitive idempotents and vice versa.
This fits into a sort of Feynman checkerboard scheme, but with three particles
transforming into three particles at each “m” vertex.

The above table of probabilities allows only two possible transitions each
way. Looking at L to R transitions, x can either transform to ȳ or z̄. If x
transforms to ȳ, then z can only go to x̄ and so y can only go to x̄. Thus there
are only two Feynman diagrams that contribute to the L to R process as shown
in Fig. (7.1).

For familiarity, let us write the array of transition amplitudes in the spinor
form. Given an initial state (|xL〉, |yL〉, |zL〉), the interaction transforms it to
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Figure 7.1: Feynman diagrams that contribute to a left handed primitive
idempotent (snuark) becoming right handed.

a new state (|x̄R〉, |ȳR〉, |z̄R〉). The amplitudes for this are:

xL yL zL
x̄R 0 〈x̄R|yL〉 〈x̄R|zL〉
ȳR 〈ȳR|xL〉 0 〈ȳR|zL〉
z̄R 〈z̄R|xL〉 〈z̄R|yL〉 0

(7.48)

We can replace the transition amplitudes with products of primitive idempo-
tents:

ρxL ρyL ρzL
ρx̄R 0 ρx̄R ρyL ρx̄R ρzL
ρȳR ρȳR ρxL 0 ρȳR ρzL
ρz̄R ρz̄R ρxL ρz̄R ρyL 0

(7.49)

A similar set of transition amplitudes apply to the transformation from R to
L:

ρx̄L ρȳL ρz̄L
ρxR 0 ρxR ρȳL ρxR ρz̄L
ρyR ρyR ρx̄L 0 ρyR ρz̄L
ρzR ρzR ρx̄L ρzR ρȳL 0

(7.50)

Since we have transition amplitudes for L to R and R to L, we can combine
these together to produce transition for L to R to L. The general form will
be obvious if we work out a few of these by example. We will abbreviate the
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intermediate states by ρR:

ρxL ρR ρxL = ρxL ρȳR ρxL + ρxl ρz̄R ρxL,
ρxL ρR ρyL = ρxL ρz̄R ρyL,
ρxL ρR ρzL = ρxL ρȳR ρzL.

(7.51)

The other intermediate states, for example, ρx̄R, are eliminated by annihilation.
Since, for example, ρȳR = (ρȳR)2, we can rewrite the above as:

ρxL ρR ρxL = (ρxl ρȳR)(ρȳR ρxL) + (ρxl ρz̄R)(ρz̄R ρxL),
ρxL ρRρyL = (ρxl ρz̄R)(ρz̄R ρyL),
ρxL ρRρzL = (ρxl ρȳR)(ρȳR ρzL).

(7.52)

And this is just the top line in the matrix product: 0 ρxL ρȳR ρxL ρz̄R
ρyL ρx̄R 0 ρyL ρz̄R
ρzL ρx̄R ρzL ρȳR 0

 0 ρx̄RρyL ρx̄RρzL
ρȳRρxL 0 ρȳRρzL
ρz̄RρxL ρz̄RρyL 0



=

 ρxρȳρx + ρxρz̄ρx ρxL ρz̄R ρyL ρxL ρȳR ρzL
ρyL ρz̄R ρxL ρyρx̄ρy + ρyρz̄ρy ρyL ρx̄R ρzL
ρzL ρȳR ρxL ρzL ρx̄R ρyL ρzρx̄ρz + ρzρȳρz


(7.53)

where we have left off the L and R labels on the diagonal to fit to the page.
Thus it is natural for us to use matrices to represent the L to R and R to L
processes.

It is important to note that this sort of representation is not a general
feature of Feynman diagrams. It only works here because we are assuming (by
energy considerations) that all three of the initial and final states are filled by
exactly one particle each.

If we represent our states ρχL and ρχ̄R in the Pauli algebra as 0.5(1 + σχ)
and 0.5(1−σχ), respectively, we can simplify the above matrix product. Recall
that any product that begins and ends with 0.5(1 + σχ) is a real multiple of
0.5(1 + σχ). For example:

ρx(a11̂ + axx̂+ ay ŷ + az ẑ)ρx,
= 0.5(1 + x̂)(a11̂ + axx̂+ ay ŷ + az ẑ)0.5(1 + x̂),
= (a1 + ax)0.5(1 + x̂),
= (a1 + ax)ρx.

(7.54)

Thus ρxρȳρx = 0.5ρx, and the diagonal elements in the matrix product of
Eq. (7.53) reduce to give: ρxL ρxL ρz̄R ρyL ρxL ρȳR ρzL

ρyL ρz̄R ρxL ρyL ρyL ρx̄R ρzL
ρzL ρȳR ρxL ρzL ρx̄R ρyL ρzL

 (7.55)

Similarly, using the methods of Sec. (2.4), the off diagonal terms reduce. For
example:

ρxL ρȳR ρzL
= 0.5(1 + i) ρxL ρzL,
=
√

0.5 e+iπ/4ρxL ρzL,
(7.56)
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where i = x̂yz as before. One obtains the angle ±iπ/4 for the various off
diagonal terms according to which diagonal they are in. Factoring out

√
0.5,

the fully reduced product is:

√
0.5

 √
2ρxL e−iπ/4ρxLρyL e+iπ/4ρxLρzL

e+iπ/4ρyLρxL
√

2ρyL e−iπ/4ρyLρzL
e−iπ/4ρzLρxL e+iπ/4ρzLρyL

√
2ρzL

 (7.57)

The elements of the above matrix are Clifford algebra constants rather than
the usual complex numbers.

Consider general 3 × 3 matrices whose elements are complex multiples of
the corresponding elements of the above matrix. Such matrices are more gen-
eral than complex matrices, however, since the Clifford algebraic constant is
specified for each position in the matrix, the number of degrees of freedom is
the same as that of complex 3× 3 matrices.

The sum of two such matrices will still be of this form, so this type of
matrix is closed under addition. And addition will be analogous to addition of
complex matrices. While multiplication will be different from that of complex
matrices, the reader can quickly verify (using the primitive idempotent product
reduction equations) that matrices of this type are closed under multiplication.

What’s more, matrices of this sort include a natural unit matrix:

1̂ =

 ρxL 0 0
0 ρyL 0
0 0 ρzL

 . (7.58)

therefore we have an algebra. That is, we have a set of objects which we can
add and multiply, a zero (i.e. the matrix of all zeros), and a unit.

This is very significant. The arrays of amplitudes for left handed particles
becoming right handed and returning to left handed form an algebra. We there-
fore can think of these objects as quantum states and compute their primitive
idempotents using the machinery we developed in Chapter (3). This means
that we can derive the structure of bound states of primitive idempotents from
the structure of the primitive idempotents using the same mathematics. This
is how we will derive the elementary fermions in Chapter (8). But first, let us
examine exactly what this sort of sleight of hand means.

7.8 Bound State Primitive Idempotents

Our original motivation for using a density operator formalism was that the
formalism worked for the elementary fermions. But now our primitive idempo-
tents are assumed to be subparticles and the elementary fermions that make up
the elementary fermions. This implies that there must exist a way for relating
our composite models of fermions back to an idempotent form. In this section
we address two objectives. First, we solve the primitive idempotent problem
for the bound states. Second, we give an interpretation in terms of forces.
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We are proposing that matrices of primitive idempotents are how one must
model the natural bound states of primitive idempotents. That is, we require
our bound state ρ be of the form:

ρa =

 axxρx axyρx ρy axzρx ρz
ayxρy ρx ayyρy ayzρy ρz
azxρz ρx azyρz ρy azzρz

 , (7.59)

where ajk are complex numbers. Let ρb be another such matrix, with coeffi-
cients bjk. To abbreviate our notation, let us designate these sorts of matrices
by leaving off the ρχ terms inside the matrix. But to remind us that these
are not the usual complex matrices, and cannot be multiplied as such, we will
add a hat to the matrix as in ( )ρ. Later, when we are dealing with more
complicated problems, we can add a designation outside the matrix to indicate
the internal quantum numbers of the primitive idempotents.

The product ρa ρb is of the same form, and can be computed as follows:

ρaρb =

 axx axy axz
ayx ayy ayz
azx azy azz


ρ

 bxx bxy bxz
byx byy byz
bzx bzy bzz


ρ

=

 axxbxx + 0.5axybyx + 0.5axzbzx ... ...
ayxbxx + ayybyx + 0.5(1 + i)ayzbzx ... ...
azxbxx + 0.5(1− i)azybyx + azzbzx ... ...


ρ

.

(7.60)

where “...” stands for six more terms similar to those shown, but which do
not fit on the page. The factors of 0.5 come from reduction of products like
ρx ρy ρx, and the factors of 0.5(1± i) come from products like ρx ρy ρz.

The form of the product implies a way that we can convert our ( )ρ matrices
back and forth into the usual complex matrices. The conversion runs as follows: axx axy axz

ayx ayy ayz
azx azy azz


ρ

→

 axx
√

0.5 e+iπ/12 axy
√

0.5 e−iπ/12 axz√
0.5 e−iπ/12 ayx ayy

√
0.5 e+iπ/12 ayz√

0.5 e+iπ/12 azx
√

0.5 e−iπ/12 azy azz


(7.61)

This conversion is linear. That is, if (a)ρ + (b)ρ = (a + b)ρ, then (a) + (b)
= (a + b). And it preserves multiplication, that is if (a)ρ (b)ρ = (ab)ρ, then
(a)(b) = (ab). Furthermore, the conversion preserves the unit matrix, and so
we have a way of doing computations in ( )ρ matrices using regular complex
matrices.

In short, despite the odd form of our ( )ρ matrices, they act in every way
like the usual complex matrices. In Sec. (3.3) we analyzed the structure of
the primitive idempotents of 3 × 3 complex matrices and that analysis can
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immediately be applied here. By symmetry, we need to treat the three direction
x, y, and z the same. Therefore the natural choice of primitive idempotents
are the circulant.

We found the circulant 3× 3 matrices in eigenvalue form as Eq. (3.41), and
include them here, written out in matrix form, for convenience:

ρ1 = 1
3

 1 1 1
1 1 1
1 1 1

 ,

ρν = 1
3

 1 ν ν∗

ν∗ 1 ν
ν ν∗ 1

 ,

ρν∗ = 1
3

 1 ν∗ ν
ν 1 ν∗

ν∗ ν 1

 .

(7.62)

We have labeled these primitive idempotents with the complex numbers mak-
ing up their (1, 2) position. There are three primitive idempotents. Eventually
we will associate these three solutions with the three generations of elemen-
tary particles, but to do this realistically we will need snuarks instead of the
primitive idempotents we are discussing here.

To translate the 3 × 3 matrix primitive idempotents into composite prim-
itive idempotent form, we simply use the reverse of the conversion given in
Eq. (7.61). That is, we multiply the off diagonal elements by

√
2e±iπ/12. The

three bound state primitive idempotents are then:

ρ1 = 1
3

 1
√

2e−iπ/12
√

2e+iπ/12
√

2e+iπ/12 1
√

2e−iπ/12
√

2e−iπ/12
√

2e+iπ/12 1


ρ

,

ρν = 1
3

 1
√

2e+7iπ/12
√

2e−7iπ/12
√

2e−7iπ/12 1
√

2e+7iπ/12
√

2e+7iπ/12
√

2e−7iπ/12 1


ρ

,

ρν∗ = 1
3

 1
√

2e−3iπ/4
√

2e+3iπ/4
√

2e+3iπ/4 1
√

2e−3iπ/4
√

2e−3iπ/4
√

2e+3iπ/4 1


ρ

.

(7.63)

In the above, the angles are given by −π/12, 2π/3 − π/12 = 7π/12, and
−2π/3− π/12 = −3π/4. That is, the rather arbitrary looking angles, −π/12,
7π/12 and −3π/4 are obtained by subtracting π/12 from the three complex
cube roots of unity. Thus we can solve the bound state primitive idempotent
problem.
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We’ve been using matrices of products of primitive idempotents, as in
Eq. (7.59) to represent bound states. The diagonal elements are complex mul-
tiples of primitive idempotents, ρx, ρy, and ρz. However, in Eq. (7.63) we see
that the only “complex multiples” of the diagonal elements are 1/3. Thus the
diagonal elements are treated equally. This is exactly what we expect if these
three primitive idempotents are combined into a bound state.

It is natural to expect that there should only be one bound state for the
three primitive idempotents; instead we’ve found three. But the difference
between these three solutions is not in the diagonal elements, but instead in
the off diagonal.

The off diagonal terms are products of two primitive idempotents, for ex-
ample ρx ρy. In the operator formalism, products of two primitive idempotents
are what we use to represent a process that converts a particle of one type into
another.

In the standard model, one expects that the conversion of a fermion from
one type to another is accompanied by the creation or annihilation of a gauge
boson. Thus we can think of the off diagonal elements as having something to
do with a particle interaction.

In replacing the Feynman checkerboard interaction with a matrix, we en-
forced the requirement that the number of particles of each type was conserved.
That is, we began with one ρxL, one ρyL, and one ρzL, and these became ex-
actly one ρx̄R, one ρȳR, and one ρz̄R. One normally associates a conservation
like this with an exchange force.

ed
ev d
e uv d
e eded d
e e ed d d
e e d d
e d

Figure 7.2: The mass interaction as an exchange of three “gauge bosons”.
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When the standard model deals with gauge bosons, it must define a propa-
gator for the exchange particle. In our case, the three particles are transformed
at the same point in space. Thus there are no propagators for these bosons, as
they do not propagate anywhere. We can draw gauge bosons as in Fig. (7.2).

This gives us an interpretation for the bound state primitive idempotents.
The diagonal elements correspond to the “valence primitive idempotents”, and
the off diagonal elements are the “primitive idempotent sea”. In this inter-
pretation, the three generations of fermions correspond to the same valence
primitive idempotents (and therefore have the same quantum numbers), but
correspond to different levels of excitation in the sea.





Chapter 8

The Zoo

An’ I sign for four-pound-ten a month and save the money clear,
An’ I am in charge of the lower deck, an’ I never lose a steer;
An’ I believe in Almighty God an’ preach His Gospel here.

The skippers say I’m crazy, but I can prove ’em wrong,
For I am in charge of the lower deck with all that doth belong—
Which they would not give to a lunatic, and the competition so strong!

T he previous chapter showed how it is natural to suppose that primitive
idempotents combine so as to cancel their strongest degrees of freedom,

and the resulting “snuarks” naturally form into the same doublet and dual
singlet form seen in the elementary fermions. Then we showed how to make
idempotency calculations with collections of primitive idempotents that are
bound together in a manner similar to how mass binds left and right handed
particles. The result was that the bound states exhibited three levels of exci-
tation of the sea, and we claimed that these could be thought of as the three
generations of elementary fermions.

For simplicity, these two ideas, binding primitive idempotents into snuarks
and collecting primitive idempotents into bound states, were applied separately.
In this chapter, we apply them simultaneously, and show how the result can
be interpreted as the three generations of elementary fermions.

8.1 The Mass Interaction

In Chapter (7), we associated the mass interaction with three primitive idem-
potents exchanging gauge bosons. For example three left handed primitive
idempotents can be changed into right handed primitive idempotents. Our
expectation is that the left and right handed composite states will give a sum
that has no non scalar parts left. The resulting purely scalar sum will define
the mass.

127
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Looking at this from the point of view of potential energy, we expect the
left and right handed states to have non scalar parts that cancel. That is, the
non scalar part of the left handed state needs to be the negative of the non
scalar part of the right handed state. But this implies that the gauge bosons
have completely negated the non scalar part of the left handed state.

Since the non scalar parts of a quantum state are the parts that have Planck
energies, we expect this process to leave a gauge boson with energy around the
Planck energy. But this seems rather unphysical.

To explain how the mass interaction can change the non scalar parts of
quantum states, we need to reexamine three facts from the previous chapter:
First, we found that a natural potential energy needs to ignore, or almost
ignore, the scalar part of a Clifford algebra element. Second, we found that the
natural mass interaction needs to change the sign of Clifford algebra primitive
idempotents as in 0.5(1 + ẑt) to 0.5(1 − ẑt). Third, we found that primitive
idempotents will bind in groups of three, and when doing this, there will be
three different choices for the sea that binds them together.

This book has been devoted to the discrete symmetries of elementary par-
ticles or quantum states. In so concentrating, we have ignored the fact that
elementary particles form interference patterns. This suggests that instead
of thinking of our elementary particles as idempotents such as 0.5(1 + ẑt),
we should instead think of them as having some sort of phase, for example,
eiωt0.5(1 + ẑt). In other words, we should think of −0.5(1 + ẑt) as representing
the same elementary particle as 0.5(1 + ẑt).

Since the natural potential energy needs to almost ignore the scalar part of
a Clifford algebra primitive idempotent, this suggests that we should represent
the mass interaction as a negating of the scalar part of a quantum object. This
will give something that is not normalized, so we then negate the whole object.
We will call this operation M . For example:

M(0.5(1 + ẑt)) = −(0.5(−1 + ẑt)),
= +0.5(1− ẑt). (8.1)

In general, M will negate all but the scalar part of an element. In the above
example, M maps an idempotent to an idempotent, but we are more interested
in what M does to primitive idempotents.

Note that our mass interaction, M , preserves our potential energy, V . That
is, since our potential energy is a sum of multiples of squares, changing the signs
of the vector part does not change the potential energy:

V (M(ρ)) = V (ρ). (8.2)

Any modification which consists of changing the signs of some set of compo-
nents of the Clifford algebra will preserve potential energy, but the one we are
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using minimizes the change by assuming that the change is to the scalar part
only.

To see what M does to primitive idempotents, let’s choose primitive roots
of unity ŝ, ẑt, and ̂ixyzst. A typical primitive idempotent looks like:

ρz++ = 0.125(1 + ẑt)(1 + ŝ)(1 + ̂ixyzst),
= 0.125(1 + ẑt+ ŝ+ ̂ixyzst− ẑst− îxys− ̂ixyzt− îxy).

(8.3)

Applying M to this primitive idempotent negates all but the scalar term giving:

M(ρz++) = 0.125(1− ẑt− ŝ− ̂ixyzst+ ẑst+ îxys+ ̂ixyzt+ îxy).
(8.4)

The above is not a primitive idempotent. The first four terms look like the
first four terms of ρz̄−−, but the next three terms have the wrong signs:

ρz−− = 0.125(1− ẑt)(1− ŝ)(1− ̂ixyzst),
= 0.125(1− ẑt− ŝ− ̂ixyzst− ẑst− îxys− ̂ixyzt+ îxy),
6= M(ρz++).

(8.5)

Thus M does not map primitive idempotents to primitive idempotents. The
result is not a quantum state, it is instead a mixture.

In quantum mechanics, when a state propagates to a mixture, a measure-
ment of the quantum numbers of the state gives a result proportional to the
transition probabilities between the mixed state and the various states con-
tributing to the mixture. This is exactly what we want in a mass interaction.
But instead of applying M to a primitive idempotent, we need to apply it to
bound states of the sort we found in the previous chapter.

The mass interaction defined in Eq. (8.5) will mix states completely. We
will associate the usual elementary particles with mixtures that are preserved
by this interaction. Rather than solve this problem immediately, let’s take a
look at how the solution will look.

If the mixture were equally distributed over all the states, then all the
quantum numbers would be zero and the particle would be dark matter. For
standard matter, the solutions of interest will be the ones that are not evenly
balanced. We will now assume that the states of interest are categorized by
having one snuark represented more than the others. Thus, for the purposes
of looking at quantum numbers, we can look at the quantum numbers of the
snuarks themselves.

8.2 Snuark Antiparticles

In the standard model, the quantum numbers of antiparticles are the negatives
of the quantum numbers of the particles. This is somewhat at odds with what
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we know about the quantum numbers of primitive idempotents. For example,
a typical primitive idempotent is:

ρz−+ = 0.125(1 + ẑt)(1− ŝ)(1 + ̂ixyzst),
= 0.125(1 + ẑt− ŝ− ̂ixyzst+ ẑst− îxys+ ̂ixyzt+ îxy),

(8.6)

and it’s eigenvalues can be read off the signs of the second line, that is, the
seven (non trivial) quantum numbers are +1, −1, +1, +1, −1, +1, and −1.

If we are to define the antiparticle as the particle that has the negatives of
all these quantum numbers, the particle will therefore be:

¯ρz−+ = 0.125(1− ẑt+ ŝ− ̂ixyzst− ẑst+ îxys− ̂ixyzt− îxy). (8.7)

But the above does not satisfy the idempotency equation ρ2 = ρ and is therefore
not an idempotent, primitive or otherwise.

The difficulty arises from the fact that quantum numbers for primitive idem-
potents are inherently multiplicative. As soon as our Clifford algebra is com-
plicated enough to include two commuting roots of unity, the product of those
two quantum numbers will not be negated when the two quantum numbers
are negated. For the moment, we will ignore this problem, which is similar to
what happens with the mass interaction.

In defining an antiparticle as having negated quantum numbers, if we are
to assume that they are primitive idempotents we have to define which three
of the seven possible quantum numbers are to be negated. The set of seven
commuting roots of unity for our example are:

ŝ, îxy, ẑt,

ẑst, îxys, ̂ixyzt, ̂ixyzst (8.8)

The quantum numbers of an observed particle are the quantum numbers that
have not been canceled in the binding together of the particle. Therefore, it
makes sense to choose the three of these seven that have the least energy. The
potential energy of those in the top row are vs, v2

s , and vsvt. None of these
are smaller than the potential energies of those in the second row, v2

svt, v
3
s ,

v3
svt, and v4

svt. Therefore the top row are the commuting roots of unity with
minimum potential energy.

Negating the ẑt quantum number means that the direction of travel of
the antiparticle is the opposite of the particle. This is compatible with the
idea that the antiparticles correspond to particles traveling backwards in time.
Therefore, we will classify the antiparticles that carry a −1 quantum number
for ẑt as traveling in the same direction as the particles with a +1 quantum
number.

The question then arises whether a primitive idempotent and the antipar-
ticle of a primitive idempotent can combine into a snuark. While we ignored
this possibility in the previous section, we now rectify this.
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In contrast to the previous chapter, by taking into account antiparticles
there are now eight primitive idempotents, and we label them by (ẑt, ŝ, îxy):

ẑt ŝ îxy ẑst îxys ̂ixyzt ̂ixyzst
ρz̄−− − − − − + + −
ρz̄−+ − − + − − − +
ρz̄+− − + − + − + +
ρz̄++ − + + + + − −
ρz−− + − − + + − +
ρz−+ + − + + − + −
ρz+− + + − − − − −
ρz++ + + + − + + +

(8.9)

In the above we have represented the quantum numbers of ±1 by ±.
There are four primitive idempotents with positive ̂ixyzst quantum num-

bers and four with negative. This gives sixteen possible snuarks that cancel̂ixyzst. After ̂ixyzst, the next largest commuting root of unity is ̂ixyzt. Of
the sixteen snuarks, eight of these also have zero for ̂ixyzt. Leaving off the two
columns of zero for ̂ixyzst and ̂ixyzt quantum numbers, these eight snuarks
are:

ŝ ẑt ẑst îxy îxys
ρz+−,z++ + + − 0 0
ρz̄+−,z̄++ + − + 0 0
ρz−−,z−+ − + + 0 0
ρz̄−−,z̄−+ − − − 0 0
ρz+−,z̄+− + 0 0 − −
ρz++,z̄++ + 0 0 + +
ρz−−,z̄−− − 0 0 − +
ρz−+,z̄−+ − 0 0 + −

(8.10)

In the above we represent quantum numbers of ±2 by ±.
While there are five non zero quantum numbers in the snuarks of Eq. (8.9),

there are only three that are independent. We can graph them using ŝ, ẑt and
îxy. See Fig. (8.1), and compare with Fig. (6.5). The primitive idempotents
form a cube with edges of length 2. The eight snuarks, by contrast, form the
corners of a block with two edges of length 2

√
2 and one edge of length 4, at

least in the above choice of quantum numbers. Since quantum numbers can be
scaled, the snuark quantum numbers cannot be distinguished from a cube.

8.3 Quarks

Fig. (8.1) gives the quantum numbers for one snuark. Following the modified
Feynman checkerboard model of the previous chapter, we expect the chiral
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Figure 8.1: Quantum number plot of the eight snuarks with zero ̂ixyzst
and ̂ixyzt. The primitive idempotents are marked with small solid circles

and form a cube aligned with the axes.

fermions to require three snuarks each. In combining snuarks, it is natural
to group three snuarks of the same sort, but with different orientations. For
example, one could combine ρx+−,x̄+−, ρy+−,ȳ+−, and ρz+−,z̄+−. We will
associate the leptons with these sorts of combinations.

According to our modified Feynman checkerboard model, three snuarks
differing only by orientation will combine to produce a chiral fermion that will
be able to produce a particle whose potential energy is purely scalar. What
would be the effect of a substitution of one of the snuarks? The result will be
that the potential energy of the combination will no longer be purely scalar.
Since we have a model of the potential energy, we can minimize the change in
potential energy caused by the substitution of a snuark.

As an example, let suppose that our three snuarks are of type ρ∗+−,∗++

where ∗ represents x, y, and z, and that this snuark contributes to a fermion
which is purely scalar. Then we have

ρx+−,x++ + ρy+−,y++ + ρz+−,z++ + RH = scalar, (8.11)



8.3. QUARKS 133

where “RH” stands for the same sum but for the right handed particle. (At the
moment we ignore the difficulties in defining how a mass interaction is mapped
to the primitive idempotents and snuarks.)

The snuarks have five nonzero quantum numbers, ŝ, ẑt, îxy, ẑst and îxys.
The potential energy of these commuting roots of unity are vs, vsvt, v2

s , v2
svt,

and v3
s . Of these, the two highest potential energies are v2

svt and v3
s , correspond-

ing to ẑst and îxys. Following the same energy principle we’ve been using for
combining primitive idempotents into snuarks, we assume that when snuarks
substitute for one another, these two degrees of freedom must be conserved.

Referring to Eq. (8.10), we see that requiring that these quantum numbers
not be changed in a substitution, groups the snuarks into four groups of two:

ŝ ẑt ẑst îxy îxys
ρz+−,z++ + + − 0 0
ρz̄−−,z̄−+ − − − 0 0
ρz̄+−,z̄++ + − + 0 0
ρz−−,z−+ − + + 0 0
ρz+−,z̄+− + 0 0 − −
ρz−+,z̄−+ − 0 0 + −
ρz−−,z̄−− − 0 0 − +
ρz++,z̄++ + 0 0 + +

(8.12)

When a snuark is substituted, the quantum numbers of the resulting quark will
be intermediate between the quantum numbers of the corresponding leptons.

Referring again to Fig. (8.1), our substitution rule allows snuarks to pair if
they are on opposite corners. Rather than graph them in this manner, let us
replace our ẑt and îxy axes with ẑst and îxys. That is, instead of graphing ŝ
with the next two smallest potential degrees of freedom, we will instead graph
ŝ with the two largest potential degrees of freedom.

This sort of change to the choice of independent quantum numbers used
in plotting the particles is done for convenience only. The student should
remember that there is no physical 3−dimensional space for these graphs.

By our energy principle, the large degrees of freedom that will be conserved
in substitution, and by graphing with these degrees of freedom, the quarks will
form columns between the leptons. See Fig. (8.2).

Each quark comes in three colors. In our model, this corresponds to the
fact that there are three ways the substitution can take place. In the example
of substitutions of snuarks of type ρ∗+−,∗++, the alternatives are snuarks of
type ρ∗̄−−,∗̄−+. Composites of this type form the leftmost column of Fig. (8.2).
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ŝ

−∗̂st

̂i ∗ xyzs

(∗̂t, ŝ, îxy)
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Figure 8.2: Quantum number plot of the eight leptons and sixteen quarks
in snuark form relative to the primitive idempotents. Primitive idempotents
are small filled circles, leptons are large hollow circles and quarks (×3) are

large filled circles.

The two leptons and six quarks, with their (non zero) quantum numbers, are:

ŝ ẑt ẑst
ρx+−,x++ ρy+−,y++ ρz+−,z++ +6 +6 −6
ρx̄−−,x̄−+ ρy+−,y++ ρz+−,z++ +2 +2 −6
ρx+−,x++ ρȳ−−,ȳ−+ ρz+−,z++ +2 +2 −6
ρx+−,x++ ρy+−,y++ ρz̄−−,z̄−+ +2 +2 −6
ρx+−,x++ ρȳ−−,ȳ−+ ρz̄−−,z̄−+ −2 −2 −6
ρx̄−−,x̄−+ ρy+−,y++ ρz̄−−,z̄−+ −2 −2 −6
ρx̄−−,x̄−+ ρȳ−−,ȳ−+ ρz+−,z++ −2 −2 −6
ρx̄−−,x̄−+ ρȳ−−,ȳ−+ ρz̄−−,z̄−+ −6 −6 −6

(8.13)

The leptons are the top and bottom particles.

There are a total of 8 leptons and 24 quarks whose quantum numbers are
shown in Fig. (8.2). By the same method shown in Section (7.8), each of these
32 composites comes in three choices of sea, and these are the three generations.
For the remainder of this chapter we will ignore the details of the generations.
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The strongest force between the 32 leptons and quarks arises from their
largest potential degree of freedom. This force corresponds to the “strong”
force of the standard model. This is the uncanceled vector potential of the
quarks. The leptons add to scalars and so do not partake in the strong force.

Since the strong force is associated with a non scalar, its strength is of the
magnitude of the Planck energy, and therefore quarks will bind together so
strongly that ordinary energies will be unable to separate them.

To determine how the strong force acts between quarks, we need to compare
the degrees of freedom of a snuark with the snuark it can substitute for. That
is, we must compute the differences between the pairs of snuarks of Eq. (8.12):

ŝ ẑt ẑst îxy îxys
ρz−−,z−+ − ρz̄+−,z̄++ −4 +4 0 0 0
ρz−+,z̄−+ − ρz+−,z̄+− −4 0 0 +4 0
ρz+−,z++ − ρz̄−−,z̄−+ +4 +4 0 0 0
ρz++,z̄++ − ρz−−,z̄−− +4 0 0 +4 0

, (8.14)

and similarly for x and y. The negatives of these are also available.
We will define the color charges as red, green, and blue, and, in reference to

a lepton made from snuarks traveling in the +x, +y, and +z directions, we will
associate red with a substitution of the +x snuark, green with a substitution
of the +y snuark, and blue with a substitution of the +z snuark.

To make an elementary fermion requires that we give the left handed as well
as the right handed part. Therefore, to compute the potential energy between
a collection of quarks we will have to add together the right and left handed
portions. At this time we have not yet fully explained the mass interaction.
However, peeking ahead, we will find that the mass interaction puts the snuarks
(or the equivalents to snuarks) into pairs, and we have conveniently arranged
for the snuark differences listed in Eq. (8.14) to be arranged in pairs. That is,
they are listed in left handed / right handed pairs.

Eq. (8.14) are written in terms of +z snuarks, so they define the blue
quantum numbers. Since the left handed state has to accompany the right
handed state, we have to add these together by pairs to define the blue quantum
numbers. The two pairs give different sums, B1 and B2 as follows:

ŝ ẑt ẑst îxy îxys
B1 −8 +4 0 +4 0
B̄1 −8 −4 0 −4 0
B2 +8 +4 0 +4 0
B̄2 +8 −4 0 −4 0

. (8.15)

For example, B1 = (ρz−−,z−+− ρz̄+−,z̄++) +(ρz−+,z̄−+− ρz+−,z̄+−), while B2

is the sum of the last two lines of Eq. (8.14).
In computing B1 and B2 as differences between snuarks we took the sum

over all degrees of freedom. The ŝ degree of freedom has the lowest potential
energy, vs, and is small compared to that of the strong force, v2

svt or v3
s . In

the standard model, the forces are divided according to their strength. This
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suggests that we need to think of the blue quantum number as the average of
B1 and B2.

With this interpretation, we ignore the ŝ degree of freedom. The red, green,
and blue quantum numbers are:

x̂t îyz ŷt −îxz ẑt îxy
R +4 +4 0 0 0 0
G 0 0 +4 +4 0 0
B 0 0 0 0 +4 +4
R̄ −4 −4 0 0 0 0
Ḡ 0 0 −4 −4 0 0
B̄ 0 0 0 0 −4 −4

. (not quite right) (8.16)

To get a scalar sum, we can add R to R̄, or the same with green and blue.
Collections of colored particles that satisfy this requirement are allowed in the
standard model, but the standard model also allows sums that have equal
amounts of red, green, and blue.

In Section (8.1), we made the assumption that “the states of interest are
categorized by having one snuark represented more than the others.” In other
words, we approximated the solution by representing solutions that were pre-
dominantly oriented in one direction by solutions that were oriented only in
that direction. This approximation prevents our having colored states add to
a colorless state.

To allow colorless states to appear as a sum of the R, G and B states, we
need to replace the 0s of Eq. (8.16) with ±1 and divide the ±4 values by two:

x̂t îyz ŷt −îxz ẑt îxy
R +2 +2 −1 −1 −1 −1
G −1 −1 +2 +2 −1 −1
B −1 −1 −1 −1 +2 +2
R̄ −2 −2 +1 +1 +1 +1
Ḡ +1 +1 −2 −2 +1 +1
B̄ +1 +1 +1 +1 −2 −2

. (8.17)

These quantum numbers will give the correct behavior for quarks. We will
justify these assumptions later in the book.

8.4 Spinor and Operator Symmetry

It is time to make contact with the standard model. This book is written
from a geometric point of view. Our objective is to understand the elementary
particles as geometric objects, and to maintain as close a relationship to the
physics of the particles as possible. Our method is a “top down” approach.
We begin with geometry, that is, a Clifford algebra. We make the assumption
that the elementary particles are primitive idempotents, and we then find out
as much as we can about primitive idempotents of the Clifford algebra.
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By contrast, the standard model is built from a “bottom up” procedure.
One looks to experiment to find things that are conserved (for example, mo-
mentum, energy, electric charge), or what is the same thing, a symmetry, and
one incorporates these experimental observations into a model of the elemen-
tary particles that obey them.

For example, Einstein showed that experiments could be interpreted as
implying that the results of an experiment could never depend on the absolute
motion of the experiment. The modeler then builds this observation into the
model of the elementary particles. This is an indirect way of understanding
the physical world and it is subject to several complications and limitations.

Newton developed a method of modeling physical situations that was very
direct and had clear and simple physical interpretations. Particles were as-
sumed to be connected to other particles by forces. Forces cause acceleration
of the particles according to the mass of the particle:

Fx = md2x/dt2. (8.18)

Mass, m, is simply a constant of proportionality between acceleration in a
direction, d2x/dt2, and force in that direction, Fx. Since force is arbitrarily
defined, so is mass, and one can always redefine them.

When one applies Newton’s equations to a collection of N particles, one
obtains a set of N differential equations. To predict the motion of the system,
one inserts an initial state into the differential equations and solves them. Initial
states were position and velocity. To find the final state, for example, the state
at time T , one takes the solution of the differential equation at time T . The
differential equation also provided solutions for the intermediate states.

In the 19th century, physicists and mathematicians found that they could
rewrite Newton’s laws as a variational principle. Instead of writing down N
differential equations, they could instead write down a “Lagrangian”, a real
valued function of the positions and velocities of the N particles. They next
suppose that the motion of the system maximizes (or minimizes) this function.
Newton’s differential equations can then be derived by the Euler-Lagrange
equations.

The Lagrangian formalism had various advantages over Newton’s equations.
Being only a single function, it was simpler than the full set of differential
equations. One could model constrained systems without having to keep track
of the constraint forces. But for our story, the most important advantage was
that it was very easy to incorporate symmetry into the Lagrangian function.
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In the 1920s, it was realized that since elementary particles can have such
small masses, the initial and final states of an experiment can never be deter-
mined with perfect precision. Thus the model of an experiment would have to
be statistical in nature. To achieve this, the positions and momentums (i.e.
real functions of time) of classical mechanics were replaced by position and
momentum wave functions (i.e. probability densities, or functions of space and
time).

But the probability densities of classical statistical mechanics turned out
to be inefficient at solving quantum problems. While they could be made to
work (i.e. Bohmian mechanics), a much simpler technique was to use complex
valued functions of space and time, that is, wave functions. The method could
be written in Lagrangian form, and therefore models could be easily made that
would incorporate symmetries observed in experiment.

Einstein’s relativity defines a symmetry, Lorentz invariance. Since linear
equations are easier to solve than nonlinear ones, Dirac searched for, and found,
a linear equation that would satisfy Lorentz invariance. The Dirac equation
was wildly successful at modeling the electron (and lies at the heart of the
Clifford algebra used in this book).

With the success of the Dirac equation, physics was hooked. Experimental
results were examined for other symmetries, and as these were discovered,
they were incorporated into quantum mechanics. Most physicists believed that
nature was, at heart, a collection of symmetries.

If one postulates that a differential equation satisfies a simple symmetry
principle, then one can obtain some knowledge about the solutions of the dif-
ferential equation even if one does not know the differential equation, cannot
write it down, and cannot solve it exactly. In this case, one typically ends up
with some arbitrary constants that depend on the details of the differential
equations, but one cannot solve the differential equations by symmetry alone.
And this is precisely the problem with the standard model today, too many
arbitrary constants.

On the other hand, if one postulates that a differential equation is of a
simple form, then one can solve the differential equation directly. Thus the
assumption that equations of physics are simple is far more powerful than the
assumption that the equations of physics have simple symmetries.

What’s more, physicists found experimental situations where symmetry was
only approximate. This should have been a clue that symmetry was a blind al-
ley, but since great advances had been made using symmetry, physicists refused
to abandon it.

When physicists attempt to extend the standard model, they typically do
this by postulating yet more symmetry. The most important thing for them is
how this more general symmetry is broken to the observed symmetry, SU(3)×
SU(2) × U(1). The particular representations of that symmetry, that is, the
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elementary particles themselves, are treated secondarily. It is the symmetry
that the usual approach to physics treats primarily.

Since we are deriving the standard model in the reverse direction, from the
bottom up, our method must instead concentrate on the representatives of the
symmetry. We then show that these objects possess the symmetry given them
in the standard model. As a first step, we’ve already seen in Section (7.8)
that our bound states will appear in three varieties that we interpret as the
generations.

In Section (8.3), we showed that our bound states appeared in the correct
numbers to give 24 quarks and 8 leptons, under the interpretation that the
leptons were pure mixtures and the quarks were not. And we showed that the
rule that quarks only appear in colorless mixtures was plausible. The leptons
were singlets for color, while the quarks were triplets. This singlet / triplet
structure reminds one of the SU(3) structure of the leptons and quarks, but
the symmetry of our model is simpler than SU(3).

Our representation was based on a choice of three perpendicular vectors
in 3 spatial dimensions. We used the example of x̂, ŷ, and ẑ as indicating
those vectors. The symmetry of this sort of choice is not SU(3), but instead
is only SO(3), the symmetry of proper rotations of 3-dimensional real space.
Both SU(3) and SO(3) are proper rotations, that is, they both are connected
components that include the identity rotation.

The quantum states of the standard model are represented by spinors, while
we are using density operators. Spinors possess an arbitrary complex phase,
while density operators do not. This accounts for the difference in symmetry be-
tween SU(3) and SO(3). That is, SU(3) preserves the length of 3-dimensional
complex vectors, while SO(3) preserves the length of 3-dimensional real vec-
tors. Thus the symmetry of our quarks matches the SU(3) symmetry of the
standard model quarks, after taking into account the difference between spinors
and density operators.

The SU(2) symmetry of the SU(3)× SU(2)×U(1) standard model is also
called “weak isospin”. The Pauli algebra also corresponds to an SU(3) sym-
metry, but it is distinct from weak isospin in more than just application.

The Pauli algebra contains three generators, x̂, ŷ and ẑ. Given any unit
vector (ux, uy, uz), we can define the operator uxx̂ + uy ŷ + uz ẑ and define
quantum states that are (spin-1/2) eigenstates of this operator. And all these
different states can be produced in the lab.

By contrast, weak isospin defines the relationship between left handed and
right handed states. The left handed states show up in doublet representations
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while the right handed states are singlets. If one were to imagine these states
defined with a different axis (as can be had with the Pauli algebra), we could
have a state that is mixed between electron and neutrino. These sorts of things
are not observed in the lab. In standard quantum mechanics they are excluded
by superselection rules. Consequently, in showing that our particles have an
SU(2) symmetry equivalent to that of the standard model, we do not have to
produce a full set of generators for this SU(2) symmetry.

Consider the Clifford algebra with only one dimension, say x̂′. There are
two eigenstates, 0.5(1+ x̂′) and 0.5(1− x̂′). We can think of these two states as
being an SU(2) doublet similar to the SU(2) doublet of weak isospin. We can
always increase our Clifford algebra by adding two more vectors, ŷ′, and ẑ′, to
obtain a true SU(2) representation, but in doing this our 0.5(1± x̂′) eigenstates
will not change.

In Section (7.3) we showed that it was natural that two primitive idempo-
tents that differ in their ̂ixyzst quantum numbers, but have the same velocity,
would bind together. The quantum numbers of the bound states, Eq. (7.30),
we repeat here for convenience:

1 ẑt îxys ̂ixyzst ŝ ẑst ̂ixyzt îxy
ρz−− + ρz−+ 2 2 0 0 −2 +2 0 0
ρz+− + ρz++ 2 2 0 0 +2 −2 0 0
ρz−− + ρz++ 2 2 0 0 0 0 −2 −2
ρz+− + ρz−+ 2 2 0 0 0 0 +2 +2

(8.19)

The four rightmost columns all show the same structure. There are two snuarks
with quantum number 0, and a pair with quantum number ±2. Any of these
has the same structure as weak isospin.

The reader may note that these four quantum numbers are oriented. They
depend on the velocity direction that the snuark, but since any given snuark
does have a velocity, we do not have a choice for how these four quantum
numbers are oriented. For example, if we suppose ẑst represents weak isospin,
the first two states form the doublet, and the second two states are singlets.

With this interpretation, it is satisfying to see that weak isospin does have
a full SU(2) symmetry, that is, continuing our example, the set {x̂st, ŷst, ẑst}
does form a set of generators for an SU(2). (I.e., like the vector generators of
a Clifford algebra, each squares to +1 and they anticommute.) We can thus
interpret the superselection rule as arising from the fact that weak isospin is
only defined relative to the chiral states, which are massless, travel at c, and
have an orientation.

We have treated the standard model symmetries SU(3) and SU(2) differ-
ently in that we took advantage of the difference between spinors and density
operators to explain the difference between SU(3) and SO(3), but we did not
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rely on this sort of argument with SU(2). In analogy with the SU(3) situation,
we can reduce SU(2) to a real rotation that preserves real vectors of length
2, that is, SO(2). There is then only one generator, and the representations
include the ones observed in the snuarks.

Finally, in moving from spinors to density operators, the arbitrary complex
phase of the U(1) symmetry of the standard model is eliminated. Thus we see
that the symmetry of the 32 states described in Section (8.3) matches that of
the standard model. It remains, however, to check that the whole collection
of states have quantum numbers that are compatible overall with those of the
standard model.

8.5 Weak Hypercharge and Isospin

It remains to compare the quantum numbers of one generation of the standard
model fermions with the quantum numbers of the quarks and leptons made
from snuarks. The snuark version of quarks are built from a combination of
primitive idempotent particles and primitive idempotent antiparticles, so in
comparing quantum numbers we must compare the full set of particles and
antiparticles.

To make the comparison, let us graph the quarks and leptons according
to their weak isospin and weak hypercharge quantum numbers. The quantum
numbers of the left handed antiparticles are simply the negatives of the quan-
tum numbers of the right handed particles, and the same for the right handed
antiparticles and left handed particles. See Table (8.3).

t0 t3
eR −1 0
eL −1/2 −1/2
νR 0 0
νL −1/2 +1/2
dR −1/3 0
dL +1/6 −1/2
uR +2/3 0
uL +1/6 +1/2

t0 t3
ēL +1 0
ēR +1/2 +1/2
ν̄L 0 0
ν̄R +1/2 −1/2
d̄L +1/3 0
d̄R −1/6 +1/2
ūL −2/3 0
ūR −1/6 −1/2

Figure 8.3: Weak hypercharge (t0) and weak isospin (t3) quantum numbers
for the first generation particles and antiparticles.

Weak hypercharge and weak isospin are sufficient to distinguish all the
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elementary fermions except for the right handed neutrino, νR and the left
handed antineutrino, ν̄L. In the original “standard model”, the neutrino was
assumed massless and these two states were not included. The density operator
model automatically includes these states and so we have added them to the
standard model for comparison.

In extending the standard model to include neutrino masses, there are sev-
eral possibilities, including the usual Dirac mass term, or a Majorana mass
term. More complicated ways of giving mass to the neutrino involves the ad-
dition of “sterile” neutrinos. In the next chapter we will discuss this at great
length, for now, we will simply add these two neutrinos as if we were adding a
Dirac mass term.

Other quantum numbers for the fermions are sometimes given. The weak
isospin quantum number shown is weak isospin in the 3rd, direction, t3. Some
authors add a quantum number t to distinguish the doublets, {eL, νL, dL, uL},
(which take t = 1/2) from the singlets, {eR, νR, dR, uR} (which take t = 0).

The standard model particles are defined according to how they interact
with each other. The electromagnetic coupling is called the electric charge, Q,
and is given by the sum of the weak hypercharge and weak isospin:

Q = t3 + t0. (8.20)

An analogous coupling for the weak force is called [25, Table 6.2] the “neutral
charge”, Q′. To obtain the neutral charge from weak hypercharge and weak
isospin one requires the Weinberg angle θW :

Q′ = t3 cot(θW )− t0 tan(θW ), (8.21)

where sin2(θW ) is approximately 1/4. The transformation from weak hyper-
charge to weak isospin is a linear one, so we can plot them together, see
Fig. (8.4).

The similarity between Fig. (8.2) and Fig. (8.4) show that the quantum
numbers of bound states of snuarks come in a 3-dimensional pattern (four
parallel edges of a cube) that is easy to match to the observed quantum numbers
of the elementary fermions.

There are still two difficulties. First, we did not solve the mass interaction
completely. Instead, we approximated its solutions by assuming that the so-
lution states could be approximated by the snuarks themselves. Second, there
are a number of different ways of associating the axes of the two figures. In
addition to the obvious possibility of rotating the two cubes, one can also imag-
ine that we could choose different commuting roots of unity and thereby could
transform the snuark cube.

In solving these issues, we will finally obtain complete geometric models
for the elementary particles. This will allow us to begin computing attributes
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Figure 8.4: Weak hypercharge, t0, and weak isospin, t3, quantum numbers
plotted for the first generation standard model quantum states. Leptons
are hollow circles and quarks (×3) are filled circles. Electric charge, Q,

and neutral charge, Q′ also shown.

of the elementary particles from first principles. This will be the topic of the
next chapter. The first attributes we will solve for will be the masses of the
elementary fermions, which can be thought of as the mass charges.

8.6 Antiparticles and the Arrow of Time

Following Feynman, we define antiparticles as particles that travel backwards in
time. However, given a pair of states, one a particle, the other an antiparticle,
we have no way of determining which is the one that travels backwards in time
and which travels forwards. A particle and its antiparticle form a related set,
but we cannot logically apply the label ”antiparticle” to one of them rather than
the other. If we were able to distinguish the true direction of travel in time of a
quantum state, forwards in time and therefore a particle, versus backwards in
time and therefore an antiparticle, we would have a way of defining the “arrow
of time” in quantum mechanics.

But the standard model includes no such arrow of time. Instead, we define
antiparticles by arbitrarily assuming that the states we see in everyday matter
are made up of particles, and their complementary states are antiparticles. In
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fact, there are bound states of particles with antiparticles, for example, pions:

π+ = ud̄,
π− = dū.

(8.22)

Clearly these mixed bound states are inherently neither particles nor antipar-
ticles. We have the choice of defining them either way. Looked at this way,
particle / antiparticle works best as a relative relationship between two states
rather than a description that can be absolutely applied to a single state.

Our primitive idempotents are eigenstates of velocity, and we defined their
antiparticles as particles that carried the same quantum number for velocity,
but travel in the opposite direction. As such, the primitive idempotent model
does have an arrow of time, one that is consistent across all the primitive
idempotents, if not the elementary particles.

Of course in fitting the model to experiment we will have two choices, and
the arrow of time will melt away, but unlike the standard model, in the density
operator model we can naturally extend the particle / antiparticle relationship
to all the elementary particles.

We therefore examine the particle / antiparticle content of the snuark model
of the elementary fermions. Repeating Eq. (8.10), there are eight snuarks:

ŝ ẑt ẑst îxy îxys
ρz+−,z++ + + − 0 0
ρz̄+−,z̄++ + − + 0 0
ρz−−,z−+ − + + 0 0
ρz̄−−,z̄−+ − − − 0 0
ρz+−,z̄+− + 0 0 − −
ρz++,z̄++ + 0 0 + +
ρz−−,z̄−− − 0 0 − +
ρz−+,z̄−+ − 0 0 + −

. (8.23)

Of these, two are pure antiparticle, ρz̄−−,z̄−+ and ρz̄+−,z̄++, two are pure
particle, ρz+−,z++ and ρz−−,z−+, and the remaining four are mixed.

Returning to the snuark and quark quantum number plot Fig. (8.2), there
are two lepton states that are pure particle, two that are pure antiparticle,
and the remaining four are mixed. The four mixed leptons are either the weak
isospin singlets or the doublets. All the quarks are mixed. Comparing with
Fig. (8.4), it appears that the mass interaction converts pure snuarks to mixed
snuarks. But we must again stress that these purported lepton states were
made under the assumption that the true leptons were snuarks, an assumption
that we know is incompatible with our assumed gravitational interaction.
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Mass

Up along the hostile mountains, where the hair-poised snow-slide shivers—
Down and through the big fat marshes that the virgin ore-bed stains,
Till I heard the mile-wide mutterings of unimagined rivers
And beyond the nameless timber saw illimitable plains!

W e have postulated a fundamental force that binds primitive idempo-
tents. We have shown that the elementary fermions of the standard

model have a structure similar to what you would expect from a complete can-
celation of the non scalar parts of this force. We have guessed at a form for
the mass interaction. We have speculated that the measured masses of the
elementary particles is given by the scalar remnant of the fundamental force
after the vector portion of that force is completely canceled. We have assumed
that the observed leptons correspond to pure snuarks, and we have seen that
the resulting set of states are similar in nature to the quarks and leptons of the
standard model. It remains to improve this assumption and to calculate the
observed elementary fermion masses.

9.1 Statistical Mixtures

Suppose that we have a set of N probabilities pn (i.e. numbers between 0
and 1) that add up to unity, and I have N primitive idempotents ρn, defined
according to the same commuting roots of unity. Then we have:

p1 + p2 + ...+ pn = 1,
ρ1 + ρ2 + ...+ ρn = 1̂.

(9.1)

We define a statistical mixture as a sum over the primitive idempotents:

ρ = p1ρ1 + p2ρ2 + ...+ pNρN . (9.2)

The signs of the vector parts of the primitive idempotents depend on the quan-
tum numbers of the particular primitive idempotent. Only the scalar part
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always has the same sign. For the C(4, 1) Clifford algebra, there are 3 com-
muting roots of unity and therefore the scalar part is always 2−3 = 1/8. Since
the probabilities add up to one, the scalar part of a statistical mixture will also
be 1/8.

In Section Eq. (8.1) we postulated that the mass interaction, M , has the
effect of negating the signs of all the non scalar portions of a primitive idem-
potent:

M(A) = M(a11̂ + axx̂+ ay ŷ + ...+ ̂ixyzst),
= a11̂− axx̂− ay ŷ − ...− ̂ixyzst. (9.3)

We noted that M has the disquieting effect of not preserving primitive idem-
potents. That is, if ρχ is a primitive idempotent, M(ρχ) is not. Instead, it is
a more general operator.

However, M preserves the scalar part of a primitive idempotent:

〈M(a11̂ + axx̂+ ...)〉0 = a1 = 〈(a11̂ + axx̂+ ...)〉0. (9.4)

and consequently we can hope that M(ρχ) can be interpreted as a function
that maps statistical mixtures to statistical mixtures.

In defining the modification to the Feynman checkerboard, we assumed that
the transition amplitudes were given by products of the primitive idempotents.
We then assembled the amplitudes into a 3 × 3 matrix of amplitudes and
associated the bound states with the matrices that were primitive idempotents
in the algebra of all such matrices.

To make the Feynman checkerboard generalization work with our mass
interaction, we need to replace its primitive idempotents with statistical mix-
tures. To see how this works, let’s consider products of two different statistical
mixtures, ρ and ρ′. Each of these will have N probabilities and primitive idem-
potents, but following our earlier efforts in the Feynman checkerboard matrices,
we do not assume that they use the same sets of primitive idempotents:

ρ = p1ρ1 + p2ρ2 + ...+ pNρN ,
ρ′ = p′1ρ

′
1 + p′2ρ

′
2 + ...+ p′Nρ

′
N .

(9.5)

The contribution to the transition amplitude, ρm ρ′n, needs to be multiplied
by the probability that both of these are the actual primitive idempotent. We
assume that the probabilities are independent, so this probability is just the
product of the probabilities, pnp′m. Summing up over all possible choices of the
two primitive idempotents, the statistical mixture of the transition amplitude
is simply: ∑

m

∑
n(pmp′n ρm ρ′n) = (

∑
m pmρm)(

∑
n p
′
nρ
′
n),

= ρ ρ′.
(9.6)
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Thus the machinery for making computations with statistical mixtures of prim-
itive idempotents is similar to the machinery we’ve already been using with the
primitive idempotents themselves.

If M(ρz++) is a statistical mixture, then we can write it as a sum over
primitive idempotents. To compute it as a sum over primitive idempotents
oriented in the z direction, the probabilities are computed as the scalar parts of
8M(ρz++) ρ±z±±. The 8 comes from the conversion from the “trace” function
used in matrices to the “scalar part” function used in geometry. We first write
out M(ρz++):

M(ρz++) = M(0.125(1 + ẑt+ ŝ+ ̂ixyzst− ẑst− îxys− ̂ixyzt− îxy)),
= 0.125(1− ẑt− ŝ− ̂ixyzst+ ẑst+ îxys+ ̂ixyzt+ îxy).

(9.7)
Then, after a certain amount of calculation, the transition probabilities are:

pz++ = −0.75, pz+− = +0.25, pz−+ = +0.25, pz−− = +0.25,
pz̄++ = +0.25, pz̄+− = +0.25, pz̄−+ = +0.25, pz̄−− = +0.25. (9.8)

Note that while the probabilities do add to unity, one of them, the one cor-
responding to the probability of the mass interaction leaving the primitive
idempotent unchanged, is negative. This indicates the mass interaction does
not map the primitive idempotent ρz++ to a statistical mixture, which should
not be very surprising. The result is obviously general, none of the primitive
idempotents ρzχχ will be mapped to a statistical mixture.

We can also compute the transition probabilities for M(ρz++) to primitive
idempotents oriented in the x direction. We obtain:

pz++ = −0.25, pz+− = +0.25, pz−+ = +0.25, pz−− = +0.25,
pz̄++ = −0.25, pz̄+− = +0.25, pz̄−+ = +0.25, pz̄−− = +0.25. (9.9)

Again, the transition probabilities sum to unity, but two of them are nega-
tive. The negative ones are the ones that leave the last two quantum numbers
unchanged.

We next look at the action of M on snuarks. Let us repeat the calculation
with M(ρz+−,z++). Referring to Eq. (8.12) for the snuark values:

M(ρz+−,z++) = M(0.25(1 + ẑt+ ŝ− ẑst),
= 0.25(1− ẑt− ŝ+ ẑst).

(9.10)

Since snuarks are combinations of two primitive idempotents, the scaling factor
is changed. To see what it is, note that (ρz+−,z++)2 = ρz+−,z++, so the
transition probability should be unity. But the scalar part of ρz+−,z++ is 0.25,
so the scaling factor needs to be 4. Accordingly, compute the scalar part of
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4M(ρz+−,z++) ρχ,χ:

pz+−,z++ = −0.5, pz̄−−,z̄−+ = +0.5, pz̄+−,z̄++ = +0.5, pz−−,z−+ = +0.5,
pz+−,z̄+− = +0.5, pz−+,z̄−+ = +0.5, pz−−,z̄−− = +0.5, pz++,z̄++ = +0.5.

(9.11)
The probabilities sum two 2 because the snuarks doubly represent the number
of degrees of freedom. And again we have a negative probability for the tran-
sition from number. Also, since our snuarks are degenerate, that is, since they
share degrees of freedom, the probabilities sum to more than 1.

Snuarks with different orientation can share only two degrees of freedom, 1̂
and ŝ. Therefore, the transition probabilities will all be (1− 1 + 0 + 0)/4 = 0
or (1 + 1 + 0 + 0)/4 = 0.5, depending on the eigenvalue of ŝ. Referring to
Eq. (8.12), the transition probabilities are:

px+−,x++ = 0, px̄−−,x̄−+ = +0.5, px̄+−,x̄++ = 0, px−−,x−+ = +0.5,
px+−,x̄+− = 0, px−+,x̄−+ = +0.5, px−−,x̄−− = +0.5, px++,x̄++ = 0.

(9.12)
Note that none of the above are negative, and that M will map a snuark to
a statistical mixture of four snuarks. And that statistical mixture is a little
special; it is equal for all four values.

We represent Stern-Gerlach filters with projection operators, and the key
attribute of Stern-Gerlach filters is that after they measure an attribute of
a particle they preserve that attribute. This is the physical reason why it
is natural for us to use primitive idempotents to represent the elementary
particles.

However, the idempotency equation, ρ2 is never equal to ρ for a statistical
mixture that is not pure. On the other hand, we can imagine a more general
Stern-Gerlach filter that would preserve a statistical mixture. As before, we
will represent such a Stern-Gerlach filter with the same mathematical object
that represents the statistical mixture, ρ itself.

Given a complete set of 8 primitive idempotents, the most complete mixture
one can make is to take 0.125 of each:

ρc = 0.125(ρ1 + ρ2 + ...+ ρ8) = 0.1251̂. (9.13)

Since this is a mixture, it is no longer idempotent, but it is suspiciously close:

ρ2
c = 0.125ρc. (9.14)

That is, ρc is just an eighth of the unity operator, which is idempotent, but
not a primitive idempotent. This suggests that a natural extension of the
idempotency equation to statistical mixtures is to allow

ρ2 = kρ, (9.15)
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where k is a real constant. The value 0.1251̂ is a pure scalar and therefore has a
very low potential energy. This suggests that we should consider the potential
energies of statistical mixtures.

In making calculations with primitive idempotents, one of the most useful
techniques we used was the fact that any product that begins with a primitive
idempotent and ends with another, will be a complex multiple of the two
primitive idempotents on the ends. For example:

ρm X ρ′n = xmn ρm ρ′n, (9.16)

where X is any operator, and xmn is a complex number. From a physical
point of view, this corresponds to putting X between two Stern-Gerlach filters.
Because the filters allow only a single state to exit, the stuff in the middle, X,
can only have the effect of decreasing the amplitude, or changing its phase.

9.2 The Koide Relation

In 1982, Yoshio Koide postulated [26] a relationship between the masses of the
charged leptons.





Chapter 10

Cosmic Haze

The Spirit gripped him by the hair, and sun by sun they fell
Till they came to the belt of Naughty Stars that rim the mouth of Hell.
The first are red with pride and wrath, the next are white with pain,
But the third are black with clinkered sin that cannot burn again:
They may hold their path, they may leave their path, with never a soul to

mark,
They may burn or freeze, but they must not cease in the Scorn of the Outer

Dark.
The Wind that blows between the Worlds, it nipped him to the bone,
And he yearned to the flare of Hell-gate there as the light of his own hearth-

stone.

W hile snuarks and anions are too high energy for man to create them
with current technology, nature has access to higher energies and we can

suppose that they were present at the big bang, and that they may be let loose
by the extreme conditions at black holes.
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Chapter 11

Conclusion

Small mirth was in the making—now
I lift the cloth that cloaks the clay,
And, wearied, at thy feet I lay
My wares, ere I go forth to sell.
The long bazar will praise, but thou—
Heart of my heart—have I done well?

P erhaps we’ve applied density operator formalism with too much enthu-
siasm and have over reached a calculation or two. Apologies to the reader.

Certainly we’ve added this chapter mostly to provide an opportunity to quote
from yet one more Kipling poem.
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