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Soliton solutions of nonlinear wave equations are postulated as a model for the elementary chiralfermions. The Dirac equation is derived from the requirement that the solitons be represented in anon interacting form, and that the nonlinear wave equation be of a reasonable type in the GeometricAlgebra.

PACS numbers:
This is the �fth paper in a series by the author de-scribing a new foundation for quantum mechanics basedon the Proper Time Geometry (PTG). For an introduc-tion to the PTG and a brief discussion of how clasicalrelativistic mechanics works in the geometry, see [1]. Foran introduction to the Geometric Algebra, see [2]. For ageometric description of the internal symmetries of thefermions, see [2]. For an explanation of how the symme-tries of charge conjugation and parity complementationcome to be violated, see [3]. For a brief description ofhow the PTG explains the issue of de Broglie's matterwaves having a phase velocity exceeding c, see [4]. Theseearlier papers were mostly dedicated to either classicalmechanics or the internal symmetries of fermions. Thispaper is devoted to the question of soliton plane waves inthe context of the PTG. For work by other authors usingsimilar modi�cations of the geometry of special relativitysee [5], [6], [7], [8].
The PTG is an alternative geometry for Special Rel-ativity (SR) that shares the same local metric equationas the LMG, but a di�erent interpretation of the coordi-nates, and a di�erent global topology.[1] A previous paperby the author, [2], gave a geometric interpretation of thefermions in terms of the Geometric Algebra (GA) de�nedon the PTG. A GA is a Cli�ord algebra generated by avector basis given by the tangent space of the underlyingmanifold, with a signature chosen to match that of thenatural metric for the manifold. For an introduction tohow GAs are used in modeling classical mechanics, see[9].
Given the history of quantum mechanics, it is naturalfor physicists to use sine waves, that is, waves of the formexp(i(k � r � !t)), to model matter waves. That is, oneassumes that the free particle momentum eigenstates cor-respond to sine waves, and one then expands an arbitraryproblem in terms of sine waves. Instead, this paper willsuggest that the free particle momentum eigenstates aresquare waves. That is, they are periodic waves which con-sist of constant values separated by discontinuities. Thisradical departure from standard physics requires somejusti�cation.
The most important reason for considering square
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waves instead of sine waves is the formalism of quantum�eld theory (QFT). In QFT, calculations are particularlysimple when done in the momementum representation,that is, when done with momentum eigenstates. Thissuggests that these momentum eigenstates should havea particularly simple model. The problem is that theannihilation and creation operators act to replace onemomentum eigenstate with another. This is apparentlya discontinuous operation. What's worse, in the positionrepresentation the replacement happens simultaneouslyover all space.In the context of standard QFT, the replacement ofone sine wave by another simultaneously over all spacemakes some sort of sense, in that the individual particlesare assumed each to have use of their own copy of theDirac equation. Before the particle exists, there is nowave, nor after it is gone. On the other hand, a themeof the author's series of papers is an e�ort at unifyingthe wave equations for the various particles into a sin-gle equation. In the context of a uni�ed wave equation,the transformation of sine waves into one another (forexample, with di�erent wave vectors) is a discontinuousprocess that involves instantaneously changing the uni-�ed wave function over all space.Square waves, by contrast to sine waves, can be addedtogether to produce non periodic sums. This ability isreminiscent of the Feynman diagrams where a fermionand antifermion combine to produce a boson. As faras discontinuities, the process of combining two squarewaves so as to eliminate their periodicity is a discontinu-ous process, but as with the propagation of square waves,the discontinuity is restricted to a set of measure zero.This will be the topic of the next paper in this series.No real world particles have exact momenta and so themomementum eigenstates are an idealization only. For apractical theory, we therefore need not worry that we arerequiring the universe to possess even the mild disconti-nuities present in these ideal square waves. What we aredoing here is accepting a very mild form of discontinu-ity in our waves in return for eliminating a very strongform of discontinuity in how our waves interact with eachother.Another reason to consider square waves is that theycan be used to solve wave equations for nonlinear waveequations. While the wave equations of standard quan-tum mechanics are linear, this linearity is clearly vio-lated when they are given a probabilistic interpretation.
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This series of papers will eventually address the measure-ment problem, that is, the problem of uniting the waveand particle identities of particles, and for this, a the-ory compatible with nonlinear wave theory will be at anadvantage.\The Geometry of Fermions"[2] proposed that thefermions can be associated with elements of the GA thatsatisfy the nonlinear equation:

e2nlm = enlm; (1)
where n, l and m are indices indicating the type offermion. Now consider a polynomial over the GA:

F (�) =Xj �j�j ; (2)
with �j and � taken over the GA. Note that the poly-nomial reduces to linear form when � satis�es �2 = �.Thus the structure of the fermions themselves suggeststhat we should consider nonlinear equations that involvepolynomials such as that of Eq. (2) as possible wave equa-tions. It is also interesting to note that Eq. (1) originallycomes from Schwinger's \Measurement Algebra". Thusnonlinearity is related to measurement.

I. SCALAR WAVES ON (x; t).
It was earlier shown[2, App.] that the Dirac equationcan be \derived" in that it is the simplest linear waveequation that can be written down in the PTG using itsGA. The Klein Gordon wave equation can be obtainedby squaring the Dirac wave equation, so it too can bederived this way. But it should be clear that nature isnot at all linear. The Pauli exclusion principle makesthis very apparent, as does the probability interpretationof wave functions. The best argument for the use of lin-ear equations is that they are easier to solve than moregeneral equations.[10]As an example of a nonlinear wave equation, considerthe scalar equation:

@t (x; t) = @x( 2) = 2 @x : (3)
Before we consider the complication of a wave equationover the PTG that takes values over a geometric algebrainstead of the reals, we will examine the soliton solutionsto this simple equation.Let us look for solutions to Eq. (3) that move with nochange in shape, at constant speed v in the +x direc-tion. We will call these wave equation solutions \soli-ton" waves. By the assumption of constant speed withno change in shape,  satis�es, in addition to Eq. (3),the requirement:

 (x; t) =  (x� vt; 0) =  0(x=v � t); (4)
where  0 gives the initial condition for  . Taking deriva-tives with respect to x and t gives:

@x (x; t) = _ 0(x=v � t)=v;
@t (x; t) = � _ 0(x=v � t): (5)

FIG. 1: Soliton wave solutions for Eq. (3). Two waves areshown, prior to a collision.

-
x

@t 

 2 - �

 
-

�

Substituting these into Eq. (3), and setting t = 0, gives:
� _ 0(x) = 2 0 _ 0=v: (6)

This equation will be satis�ed when either _ 0 = 0, or 0 = �v=2.It is evident that we will have to consider discontinuouswaves in order to realize a nontrivial solution. Accord-ingly, assume that  0 has an isolated discontinuity atx = 0 and nowhere else. Thus  0 will be a step functionwith values  0(x) =  � or  + according as x is less thanor greater than zero. This gives  as:
 (x; t) =  � x < vt;

=  + x > vt (7)
This satis�es Eq. (3) except, perhaps, at x = vt. At thatpoint, the derivatives with respect to x and t, will bedelta functions:

@t (x; t) = ( � �  +)�(x=v � t);
@x (x; t)2 = ( 2+ �  2�)�(x� vt);

= ( 2+ �  2�)�(x=v � t)=v: (8)
Equating the two sides gives:

( � �  +) = ( + +  �)( + �  �)=v; so
�v =  + +  �: (9)

We would like to be able to add soliton solutions, so wewill choose a vacuum of 0. Thus the solitons will consistof square pulses that travel with velocity v, and haveheights of �v. To get solitons that travel in the oppositedirection, we need only invert the pulses. See Fig. (1)for an illustration of positive and negative pulses. Notethat the two solitons illustrated will collide and annihilateeach other.The solitons derived for Eq. (3) are unrealistic, as far asusing them to model the elementary chiral fermions, forseveral reasons. First, the chiral fermions travel at closeto c, while these solitons have arbitary speeds, includingboth faster and slower than light. Second, their ability to
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concentrate in x is a violation of the Heisenberg uncer-tainty principle. Third, they have nowhere near enoughdegrees of freedom to model the particle zoo. Fourth,they violate Lorentz symmetry. Fifth, they're only in onedimension. Using the PTG and promoting the scalars togeometric algebra elements solves these problems.

II. SCALAR WAVES ON (x; s; t).
Our �rst modi�cation will be to change the base spacefor Eq. (3) by adding the s dimension. Let v = (vx; vs) bethe direction of propagation of a soliton for a scalar waveu de�ned on this geometry by the following nonlinearwave equation:

@t�(x; s; t) = (vx@x + vs@s)(�2): (10)
Later in this paper, when we generalize to the machineryof the geometric algebra, we will remove the dependenceon v. For now, note that the gradient operator, whenapplied to a plane wave travelling in the v direction, willgive a result whose magnitude is proportional to vx@x +vs@s applied to the same plane wave. The problem withsimply using the r operator is that when applied to ascalar wave, it gives back a vector. In the context of thegeometric algebra, which allows the mixing of scalars andvectors, this is not a problem.In analogy with Eq. (4), we will look for solitons of theform:

�(x; s; t) = �0(s=vs + x=vx � t); (11)
where vs and vx are nonzero phase velocities. Takingderivatives with respect to x, s, and t gives:

vx@x�(x; s; t) = _�0;
vs@s�(x; s; t) = _�0;
@t�(x; s; t) = � _�0: (12)

Substituting these into Eq. (10), and setting x = s = 0,gives:
� _�0 = 4�0 _�0: (13)

This equation will be satis�ed when either _�0 = 0 or�0 = �1=4. As before, it is evident that we will have toconsider discontinuous waves in order to achieve a non-trivial solution. But in addition, we need to keep � sin-gle valued when the s coordinate changes by 2m�Rs.Therefore � must be periodic in x with wavelength�x = 2�Rsvx=vs, and periodic in time with period� = 2�Rs=vs. The phase velocity in the x direction is, asadvertised, �x=� = vx. The resulting wave is illustratedin Fig. (2).The addition of the hidden dimension has had the ef-fect of forcing the soliton solutions to lose their ability tobe concentrated in the x dimension. This can be thoughtof as an analog to the Heisenberg uncertainty principle.

FIG. 2: A soliton wave solution �� for Eq. (10).
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That is, when we require that a wave solution to Eq. (10)have a precise velocity, we lose the ability to simultane-ously restrict the wave's spatial extent. With these re-sults for scalar wave functions, we can now bring in themachinery of the geometric algebra.

III. THE DIRAC EQUATION.

Suppose that 	 satis�es a nonlinear wave equation,and we wish to associate some of its soliton solutionswith the elementary chiral fermions. As with previouswork[2], we would like a single wave equation to be ableto support the propagation of all the elementary parti-cles. Before considering the generalization of Eq. (10),we will consider the requirement that our wave equationsupport the usual rotational symmetry of 3�space. Thatis, any candidate wave equation will have to allow noninteracting solitons to propagate in all directions withoutinterference.To propagate without interference means that we re-quire that we can, if we ignore interactions, decompose awave solution into a sum over particles. Accordingly, let	 be composed of n non interacting soliton plane wavesolutions, each with velocity vector vn with jvnj = c = 1,and wave function  n so that:
	(x; y; z; s; t) =Xn  n(x; y; z; s; t); (14)

The requirement that each  n move unchanged with ve-locity vn is equivalent to:
@t n = �vn � r n = �r � vn n; (15)

where r has been dotted with vn since that is the onlydirection in which  n has variation.Since vn is an element of the Cli�ord algebra, it can beused as an operator. Consider its action on  n (i.e. theoperation of multiplication on the left by vn). The factthat vn squares to 1 implies that it has eigenvalues of �1.
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It's natural to suppose that each  n can be assumed tobe an eigenvector of vn.For a wide class of nonlinear wave equations, we willhave that the possible soliton waves can be separated intowaves that have speci�c eigenvalues with respect to vn.Consider the projection operators into these two classes:

P� = 0:5(1� vn): (16)
These operators commute with @t and vn �r, so any waveequation written only with @t, r and 	, can be separatedinto two wave equations, according to the eigenvalues ofits solitons in the vn direction. For example, suppose thewave equation is:

@t	 = F (r;	); (17)
where F can be written in a Taylor series over the reals.The projection operators, P�, will project out the com-ponents of the wave 	 with the appropriate eigenvalues,however, in order to divide the wave equation into twowave equations, one for the +1 eigenvalued waves, theother for the �1 eigenvalued waves, we must wait untilthe system evolves to a condition where these waves areno longer interacting. That is, we must choose a time,t0 where P+	 and P�	 are nonzero only in distinct re-gions. At such a time, we will have that P�	n = �	n,and we can then say that the waves have been separatedinto the projected classes. But even if no such time everarises, we can still assume that the waves can be so di-vided, in principle.It is therefore natural to suppose that each  n is aneigenvector of vn with eigenvalue �1. If so, the require-ment that the noninteracting solitons be allowed to prop-agate independently gives us the following simple equa-tion:

@t	� = �r	�; (18)
where 	� are the waves with eigenvalues of �1. It wasearlier shown[2] that the + choice in the above equa-tion gives a multiple representation of the Dirac equation.The � choice is the same thing, but with time reversed.Thus the soliton solutions of a wide variety of nonlinearwave equations can be written, in noninteracting form,as Dirac propagated waves. This suggests that Feynmandiagrams can be interpreted as the result of a lineariza-tion of an underlying nonlinear wave equation. It alsosuggests that we examine the methodology of Feynmandiagrams for hints as to the nature of the underlying non-linear wave equation. This will be the subject of a laterpaper.

IV. CLIFFORD WAVES ON (x; y; z; s; t).
We can now generalize the results of the previous sec-tions to the general problem of GA valued waves de�nedover the PTG:

@t	(x; y; z; s; t) = r(	2): (19)

As in previous papers, we tacitly assume a notationalvector t̂ to signify the di�erence between position andmomentum, but for the purposes of this paper, we neednot explicitly take this into consideration.Suppose that the direction of motion is given by a unit
vector k̂. We wish to �nd a soliton plane wave  �k with
k̂ �k = � �k. Accordingly, try

 �k = 0:5(1� k̂)(�0 + �1)u(k � r � !t); (20)
where �0 and �1 are geometric algebra constants that
have no k̂ dependence (when k̂ is considered as a gen-erator of the geometric algebra),and are even and odd,respectively, and u is a scalar function giving the spatial
dependence. In this form,  �k satis�es k̂ �k = � �k,and the division into odd and even parts eases calcula-
tions. Commuting the (1� k̂) factor around the leftmost�0 + �1 cancels out the term with �1 leaving:

 2�k = 0:5(1� k̂)�0(�0 + �1)u2(k � r � !t): (21)
As an aside directed to the problem of more general poly-nomial wave equations, note that:

 j�k = 0:5(1� k̂)�j�10 (�0 + �1)uj(k � r � !t): (22)
Setting �0 = 1, while leaving �1 arbitrary reduces thewave equation Eq. (19), from an equation over the geo-metric algebra into a simple scalar di�erential equation:

@tu = @k(u2) = 2u@ku; (23)
which we have already solved in the earlier sections ofthe paper. More generally, let �20 = �0, that is, let �0 bean idempotent that is even with respect to k. Then any�1 that is odd will give a solution of the form �0+ �0�1,and this substitution will also work with Eq. (22). Thesesubstitutions reduce the GA valued equation down to ascalar equation of the form already solved. Therefore,the soliton is a square wave over the GA.At this point, we have solved most of the problemsthat a�icted the scalar version of solitons as a model forthe elementary chiral fermions. We can choose a non-linear wave equation that supports speeds of approxi-mately c as long as ks is relatively small. The presenceof the Dirac equation, along with the metric that thePTG shares with Minkowski space, shows that the waveswill be Lorentz invariant. The use of the geometric alge-bra provides su�cient degrees of freedom to model theelementary fermions. And the Heisenberg uncertaintyprinciple cannot be violated by these waves.We have previously shown how an ideal structure forthe elementary fermions may be written in the geometricalgebra on the PTG[2]. The ideals included there can alsobe used to separate nonlinear wave equations of the formEq. (17). That is, any solution to such a wave equationcan be multiplied on the right by the ideal correspondingto an elementary fermion. Since, in a nonlinear theory,the particles do interact, this procedure only makes sense



5
in regions of space-time where the particles are not in-teracting.A previous paper,[3] showed how the violation of par-ity and charge conjugation can be attributed to a psuedoscalar component to the speed of light. This was done byderiving the Dirac equation from the Klein-Gordon equa-tion in the context of a geometric algebra de�ned on the

PTG. But the paper also showed that the class of non-linear wave equations of the form Eq. (17) were compati-ble with the transformations used to put the generalizedDirac equation into psuedoscalar form. Thus we haveshown how it is possible to de�ne a nonlinear wave equa-tion that supports these odd features of particle physics.
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