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Soliton solutions of nonlinear wave equations are postulated as a model for the elementary chiral
fermions. The Dirac equation is derived from the requirement that the solitons be represented in a
non interacting form, and that the nonlinear wave equation be of a reasonable type in the Geometric

Algebra.

PACS numbers:

This is the fifth paper in a series by the author de-
scribing a new foundation for quantum mechanics based
on the Proper Time Geometry (PTG). For an introduc-
tion to the PTG and a brief discussion of how clasical
relativistic mechanics works in the geometry, see [1]. For
an introduction to the Geometric Algebra, see [2]. For a
geometric description of the internal symmetries of the
fermions, see [2]. For an explanation of how the symme-
tries of charge conjugation and parity complementation
come to be violated, see [3]. For a brief description of
how the PTG explains the issue of de Broglie’s matter
waves having a phase velocity exceeding ¢, see [4]. These
earlier papers were mostly dedicated to either classical
mechanics or the internal symmetries of fermions. This
paper is devoted to the question of soliton plane waves in
the context of the PTG. For work by other authors using
similar modifications of the geometry of special relativity
see [5], [6], [7], [8]-

The PTG is an alternative geometry for Special Rel-
ativity (SR) that shares the same local metric equation
as the LMG, but a different interpretation of the coordi-
nates, and a different global topology.[1] A previous paper
by the author, [2], gave a geometric interpretation of the
fermions in terms of the Geometric Algebra (GA) defined
on the PTG. A GA is a Clifford algebra generated by a
vector basis given by the tangent space of the underlying
manifold, with a signature chosen to match that of the
natural metric for the manifold. For an introduction to
how GAs are used in modeling classical mechanics, see
[9].

Given the history of quantum mechanics, it is natural
for physicists to use sine waves, that is, waves of the form
exp(i(k - r — wt)), to model matter waves. That is, one
assumes that the free particle momentum eigenstates cor-
respond to sine waves, and one then expands an arbitrary
problem in terms of sine waves. Instead, this paper will
suggest that the free particle momentum eigenstates are
square waves. That is, they are periodic waves which con-
sist of constant values separated by discontinuities. This
radical departure from standard physics requires some
justification.

The most important reason for considering square
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waves instead of sine waves is the formalism of quantum
field theory (QFT). In QFT, calculations are particularly
simple when done in the momementum representation,
that is, when done with momentum eigenstates. This
suggests that these momentum eigenstates should have
a particularly simple model. The problem is that the
annihilation and creation operators act to replace one
momentum eigenstate with another. This is apparently
a discontinuous operation. What’s worse, in the position
representation the replacement happens simultaneously
over all space.

In the context of standard QFT, the replacement of
one sine wave by another simultaneously over all space
makes some sort of sense, in that the individual particles
are assumed each to have use of their own copy of the
Dirac equation. Before the particle exists, there is no
wave, nor after it is gone. On the other hand, a theme
of the author’s series of papers is an effort at unifying
the wave equations for the various particles into a sin-
gle equation. In the context of a unified wave equation,
the transformation of sine waves into one another (for
example, with different wave vectors) is a discontinuous
process that involves instantaneously changing the uni-
fied wave function over all space.

Square waves, by contrast to sine waves, can be added
together to produce non periodic sums. This ability is
reminiscent of the Feynman diagrams where a fermion
and antifermion combine to produce a boson. As far
as discontinuities, the process of combining two square
waves so as to eliminate their periodicity is a discontinu-
ous process, but as with the propagation of square waves,
the discontinuity is restricted to a set of measure zero.
This will be the topic of the next paper in this series.

No real world particles have exact momenta and so the
momementum eigenstates are an idealization only. For a
practical theory, we therefore need not worry that we are
requiring the universe to possess even the mild disconti-
nuities present in these ideal square waves. What we are
doing here is accepting a very mild form of discontinu-
ity in our waves in return for eliminating a very strong
form of discontinuity in how our waves interact with each
other.

Another reason to consider square waves is that they
can be used to solve wave equations for nonlinear wave
equations. While the wave equations of standard quan-
tum mechanics are linear, this linearity is clearly vio-
lated when they are given a probabilistic interpretation.



This series of papers will eventually address the measure-
ment problem, that is, the problem of uniting the wave
and particle identities of particles, and for this, a the-
ory compatible with nonlinear wave theory will be at an
advantage.

“The Geometry of Fermions”[2] proposed that the
fermions can be associated with elements of the GA that
satisfy the nonlinear equation:

e?zlm = €nim, (1)

where n, ! and m are indices indicating the type of
fermion. Now consider a polynomial over the GA:

PO =Y apd, @

with a; and x taken over the GA. Note that the poly-
nomial reduces to linear form when x satisfies 2 = x.
Thus the structure of the fermions themselves suggests
that we should consider nonlinear equations that involve
polynomials such as that of Eq. (2) as possible wave equa-
tions. It is also interesting to note that Eq. (1) originally
comes from Schwinger’s “Measurement Algebra”. Thus
nonlinearity is related to measurement.

I. SCALAR WAVES ON (z;t).

It was earlier shown[2, App.] that the Dirac equation
can be “derived” in that it is the simplest linear wave
equation that can be written down in the PTG using its
GA. The Klein Gordon wave equation can be obtained
by squaring the Dirac wave equation, so it too can be
derived this way. But it should be clear that nature is
not at all linear. The Pauli exclusion principle makes
this very apparent, as does the probability interpretation
of wave functions. The best argument for the use of lin-
ear equations is that they are easier to solve than more
general equations.[10]

As an example of a nonlinear wave equation, consider
the scalar equation:

Onp(x,t) = 0, (V) = 2001. (3)

Before we consider the complication of a wave equation
over the PTG that takes values over a geometric algebra
instead of the reals, we will examine the soliton solutions
to this simple equation.

Let us look for solutions to Eq. (3) that move with no
change in shape, at constant speed v in the +z direc-
tion. We will call these wave equation solutions “soli-
ton” waves. By the assumption of constant speed with
no change in shape, ¢ satisfies, in addition to Eq. (3),
the requirement:

/‘/}(mvt) :1/)(117—1)15,0) :¢0($/U_t)7 (4)

where g gives the initial condition for . Taking deriva-
tives with respect to z and ¢ gives:

aw'l)[}(x)t) = 'I/.JO($/’U—t)/1),
Oup(z,t) = —dolw/v—1). (5)

FIG. 1: Soliton wave solutions for Eq. (3). Two waves are

shown, prior to a collision.
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Substituting these into Eq. (3), and setting ¢t = 0, gives:

—%Zfo(w) = 21,/101/}0/7)- (6)

This equation will be satisfied when either z/}o =0, or
'QZJO = —’1}/2.

It is evident that we will have to consider discontinuous
waves in order to realize a nontrivial solution. Accord-
ingly, assume that ¥y has an isolated discontinuity at
z = 0 and nowhere else. Thus 1)y will be a step function
with values 1g(z) = ¥ _ or 1)1 according as z is less than
or greater than zero. This gives ¢ as:

Y(x,t) =y x <t
=, x>ut (7

This satisfies Eq. (3) except, perhaps, at © = vt. At that
point, the derivatives with respect to x and t, will be
delta functions:

Op(z,t) = (- —¢q)d(z/v—1),
6w¢(‘r7t)2 = (¢i - ’L/)%)(S(.’L’ - ’Ut),
= (W5 —¢2)d(z/v—t)/v. (8)

Equating the two sides gives:

(V- —Yy) = (Y +9-) (s —9-)/v, s0
v = Py + . 9)

We would like to be able to add soliton solutions, so we
will choose a vacuum of 0. Thus the solitons will consist
of square pulses that travel with velocity v, and have
heights of —v. To get solitons that travel in the opposite
direction, we need only invert the pulses. See Fig. (1)
for an illustration of positive and negative pulses. Note
that the two solitons illustrated will collide and annihilate
each other.

The solitons derived for Eq. (3) are unrealistic, as far as
using them to model the elementary chiral fermions, for
several reasons. First, the chiral fermions travel at close
to ¢, while these solitons have arbitary speeds, including
both faster and slower than light. Second, their ability to



concentrate in z is a violation of the Heisenberg uncer-
tainty principle. Third, they have nowhere near enough
degrees of freedom to model the particle zoo. Fourth,
they violate Lorentz symmetry. Fifth, they’re only in one
dimension. Using the PTG and promoting the scalars to
geometric algebra elements solves these problems.

II. SCALAR WAVES ON (z,s;t).

Our first modification will be to change the base space
for Eq. (3) by adding the s dimension. Let v = (v, vs) be
the direction of propagation of a soliton for a scalar wave
u defined on this geometry by the following nonlinear
wave equation:

Orp(x, 85t) = (V205 + v505)(4?). (10)

Later in this paper, when we generalize to the machinery
of the geometric algebra, we will remove the dependence
on v. For now, note that the gradient operator, when
applied to a plane wave travelling in the v direction, will
give a result whose magnitude is proportional to v;0; +
v,05 applied to the same plane wave. The problem with
simply using the V operator is that when applied to a
scalar wave, it gives back a vector. In the context of the
geometric algebra, which allows the mixing of scalars and
vectors, this is not a problem.

In analogy with Eq. (4), we will look for solitons of the
form:

¢($,S;t) = (;50(8/’[)5 + iL’/UI - t): (11)

where v, and v, are nonzero phase velocities.
derivatives with respect to z, s, and ¢ gives:

’Uwaw(]ﬁ(.’L’,s;t) = (150’
Usas¢($,8;t) = (;Z.S()a
0i6(w,5;t) = —o. (12)

Substituting these into Eq. (10), and setting z = s = 0,
gives:

Taking

— o = 4o o. (13)

This equation will be satisfied when either gi)o =0 or
¢o = —1/4. As before, it is evident that we will have to
consider discontinuous waves in order to achieve a non-
trivial solution. But in addition, we need to keep ¢ sin-
gle valued when the s coordinate changes by 2mwR;.
Therefore ¢ must be periodic in 2 with wavelength
Az = 2mRsv,/vs, and periodic in time with period
T = 21 R, /vs. The phase velocity in the z direction is, as
advertised, A, /7T = v,. The resulting wave is illustrated
in Fig. (2).

The addition of the hidden dimension has had the ef-
fect of forcing the soliton solutions to lose their ability to
be concentrated in the 2 dimension. This can be thought
of as an analog to the Heisenberg uncertainty principle.

FIG. 2: A soliton wave solution —¢ for Eq. (10).
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That is, when we require that a wave solution to Eq. (10)
have a precise velocity, we lose the ability to simultane-
ously restrict the wave’s spatial extent. With these re-
sults for scalar wave functions, we can now bring in the
machinery of the geometric algebra.

III. THE DIRAC EQUATION.

Suppose that ¥ satisfies a nonlinear wave equation,
and we wish to associate some of its soliton solutions
with the elementary chiral fermions. As with previous
work[2], we would like a single wave equation to be able
to support the propagation of all the elementary parti-
cles. Before considering the generalization of Eq. (10),
we will consider the requirement that our wave equation
support the usual rotational symmetry of 3—space. That
is, any candidate wave equation will have to allow non
interacting solitons to propagate in all directions without
interference.

To propagate without interference means that we re-
quire that we can, if we ignore interactions, decompose a
wave solution into a sum over particles. Accordingly, let
¥ be composed of n non interacting soliton plane wave
solutions, each with velocity vector v, with |v,| =c=1,
and wave function ,, so that:

U(z,y,2,51) = Y a2y, 2,51), (14)

The requirement that each ,, move unchanged with ve-
locity v, is equivalent to:

Ot = —Up - Vb, = =V - vpthy, (15)

where V has been dotted with v, since that is the only
direction in which 1,, has variation.

Since v, is an element of the Clifford algebra, it can be
used as an operator. Counsider its action on 1, (i.e. the
operation of multiplication on the left by v,). The fact
that v, squares to 1 implies that it has eigenvalues of £1.



It’s natural to suppose that each ,, can be assumed to
be an eigenvector of v,,.

For a wide class of nonlinear wave equations, we will
have that the possible soliton waves can be separated into
waves that have specific eigenvalues with respect to wv,,.
Consider the projection operators into these two classes:

P =0.5(1%0,). (16)

These operators commute with 9; and v,,-V, so any wave
equation written only with 9;, V and ¥, can be separated
into two wave equations, according to the eigenvalues of
its solitons in the v,, direction. For example, suppose the
wave equation is:

8,¥ = F(V,T), (17)

where F' can be written in a Taylor series over the reals.
The projection operators, P%, will project out the com-
ponents of the wave ¥ with the appropriate eigenvalues,
however, in order to divide the wave equation into two
wave equations, one for the +1 eigenvalued waves, the
other for the —1 eigenvalued waves, we must wait until
the system evolves to a condition where these waves are
no longer interacting. That is, we must choose a time,
to where PTW¥ and P~V are nonzero only in distinct re-
gions. At such a time, we will have that PT¥" = +¥n,
and we can then say that the waves have been separated
into the projected classes. But even if no such time ever
arises, we can still assume that the waves can be so di-
vided, in principle.

It is therefore natural to suppose that each v, is an
eigenvector of v, with eigenvalue +1. If so, the require-
ment that the noninteracting solitons be allowed to prop-
agate independently gives us the following simple equa-
tion:

O ¥* = £VIE, (18)

where U are the waves with eigenvalues of +1. It was
earlier shown[2] that the + choice in the above equa-
tion gives a multiple representation of the Dirac equation.
The — choice is the same thing, but with time reversed.

Thus the soliton solutions of a wide variety of nonlinear
wave equations can be written, in noninteracting form,
as Dirac propagated waves. This suggests that Feynman
diagrams can be interpreted as the result of a lineariza-
tion of an underlying nonlinear wave equation. It also
suggests that we examine the methodology of Feynman
diagrams for hints as to the nature of the underlying non-
linear wave equation. This will be the subject of a later

paper.

IV. CLIFFORD WAVES ON (z,y, z, s; t).

We can now generalize the results of the previous sec-
tions to the general problem of GA valued waves defined
over the PTG:

oV (x,y,2,5;t) = V(T?). (19)

As in previous papers, we tacitly assume a notational
vector t to signify the difference between position and
momentum, but for the purposes of this paper, we need
not explicitly take this into consideration.

Suppose that the direction of motion is given by a unit
vector k. We wish to find a soliton plane wave 1 with
]Aﬂ/&k = £11y. Accordingly, try

Vir =051 £ k)N + A)ulk -7 —wt),  (20)

where Ay and )\; are geometric algebra constants that
have no k dependence (when k is considered as a gen-
erator of the geometric algebra),and are even and odd,
respectively, and u is a scalar function giving the spatial
dependence. In this form, 1, satisfies lAcwik =+,
and the division into odd and even parts eases calcula-
tions. Commuting the (14 k) factor around the leftmost
Ao + A1 cancels out the term with A; leaving:

P2, =051+ k)Ao(ho + M)u(k-r—wt).  (21)

As an aside directed to the problem of more general poly-
nomial wave equations, note that:

wik =0.5(1+ ]:7)/\6_1()\0 + X))l (k- r —wt). (22)

Setting A\g = 1, while leaving A; arbitrary reduces the
wave equation Eq. (19), from an equation over the geo-
metric algebra into a simple scalar differential equation:

Opu = O (u?) = 2udyu, (23)

which we have already solved in the earlier sections of
the paper. More generally, let A2 = ), that is, let A\g be
an idempotent that is even with respect to k. Then any
A1 that is odd will give a solution of the form Ag + AgA1,
and this substitution will also work with Eq. (22). These
substitutions reduce the GA valued equation down to a
scalar equation of the form already solved. Therefore,
the soliton is a square wave over the GA.

At this point, we have solved most of the problems
that afflicted the scalar version of solitons as a model for
the elementary chiral fermions. We can choose a non-
linear wave equation that supports speeds of approxi-
mately ¢ as long as k;, is relatively small. The presence
of the Dirac equation, along with the metric that the
PTG shares with Minkowski space, shows that the waves
will be Lorentz invariant. The use of the geometric alge-
bra provides sufficient degrees of freedom to model the
elementary fermions. And the Heisenberg uncertainty
principle cannot be violated by these waves.

We have previously shown how an ideal structure for
the elementary fermions may be written in the geometric
algebra on the PTG[2]. The ideals included there can also
be used to separate nonlinear wave equations of the form
Eq. (17). That is, any solution to such a wave equation
can be multiplied on the right by the ideal corresponding
to an elementary fermion. Since, in a nonlinear theory,
the particles do interact, this procedure only makes sense



in regions of space-time where the particles are not in-
teracting.

A previous paper,[3] showed how the violation of par-
ity and charge conjugation can be attributed to a psuedo
scalar component to the speed of light. This was done by
deriving the Dirac equation from the Klein-Gordon equa-
tion in the context of a geometric algebra defined on the

PTG. But the paper also showed that the class of non-
linear wave equations of the form Eq. (17) were compati-
ble with the transformations used to put the generalized
Dirac equation into psuedoscalar form. Thus we have
shown how it is possible to define a nonlinear wave equa-
tion that supports these odd features of particle physics.
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