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A derivation of the Dirac equation, from the Klein Gordon equation is performed using the tools
of the Geometric (Clifford) Algebra. The electroweak violation of C, P, and T symmetry and the
Weinberg angle, 6y, are shown to result from a generalization of the scalar speed of light to a mixed

scalar psuedoscalar.

PACS numbers:

This paper uses the Geometric Algebra (GA) on the
Proper Time Geometry [1] to repeat Dirac’s derivation
of the Dirac equation from the Klein-Gordon equation.
A GA is a type of Clifford Algebra. These algebras are
characterized by the curious feature that they allow addi-
tion of scalars to vectors, psuedoscalars, etc. While this
power might seem to have little use in physics, in fact
the equations of physics are simplified by the use of a
GA.[2] A hint of the possible uses for such an algebra for
modeling the weak force is indicated by the presence of
mixed scalar and psuedoscalar terms in the phenomenol-
ogy of the weak interactions. [3, §20.2] Accordingly, this
paper rederives the Dirac equation from the Klein Gor-
don equation with the speed of light, ¢, generalized to a
GA constant c,.

Dirac derived the Dirac equation by looking for a linear
version of the Klein-Gordon equation:

(@)* = (V? +m?)¢. (1)

His effort was wildly successful and is repeated in some
modern textbooks. [4][5] Other common texts do not
show his derivation, but at least derive the fact that the
Dirac equation implies the Klein-Gordon equation. [6]
This paper will repeat Dirac’s derivation, but in the con-
text of a GA, which is a Clifford Algebra associated with
a manifold. Given a manifold of dimension n, its GA will
have dimension, as a linear vector space over the reals,
of 2™. The derivation here holds for other GAs, but in
order to interpret the results, we will rely on the GA of
the Proper Time Geometry (PTG).

The PTG is an alternative geometry to that of
Minkowski, which nevertheless supports the results of
special relativity.[1] Similar geometries, in that they rein-
terpret the Minkowski metric in a similar way|[7], or con-
sider a null subspace of space with an extra dimension|8§]
are described by other authors. The primary differences
between these and the PTG, are that the PTG explicitly
assumes that the extra dimension is physical, and has a
radius, R, that could, at least in principle, be measured
in standard length units, and therefore can have integra-
tion and differentiation performed upon it, and the PTG
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treats time as a parameter rather than an element of the
geometry.

Since the Klein Gordon equation, is purely scalar in
each of its terms, it can be applied to more complicated
algebras by simply reinterpreting ¢ to be a function tak-
ing values from an algebra more complicated than the
reals or complexes. In the context of the PTG, mass can
be provided through various techniques involving resum-
mation, renormalization, and or the momentum in the
hidden dimension. These will be discussed in a later pa-
per. For this paper we will restrict our attention to the
massless Klein Gordon equation.

The PTG, as a manifold, has dimension 4, therefore the
associated GA has dimension 2* = 16. For this paper,
the coordinates will be chosen as z, y, z, and s, where
s is a cyclic coordinate with a radius of Rg;. Time is
not explicitly included in the geometry, but is instead
interpreted as a parameter. Functions defined on this
geometry therefore possess 16 degrees of freedom and are
defined on a total space (including time) with a geometry
of R? x S! x R or corresponding coordinates (z,y,z) X
(s) x (t).

In order to convert PTG wave functions to wave func-
tions defined on the usual space-time, one takes a Fourier
series to eliminate the dependence on the hidden dimen-
sion s. The elementary bosons will correspond to the Oth
order term in the series, the electron family of fermions
will correspond to the 1st order term, the muon family to
the 2nd order term, etc. This allows a single wave equa-
tion in the PTG to possess sufficient degrees of freedom
to represent all the elementary particles.

It is standard practice in modern geometry to use units
where ¢ = 1. This makes less sense in the PTG, where
time is considered to be distinct from the geometry of
space. In addition to the PTG, there are several inter-
esting modern theories of space-time that assume a pre-
ferred frame of refernce. A good example of a modern
theory that includes a preferred frame of reference, and
also makes more explicit use of proper time, is the “Abso-
lute Euclidian Space-Time” (AEST) theory of Montanus,
[7]. For these theories, while there is no reason to assume
that space and time are interchangeable, the wave equa-
tions are simpler when written with ¢ = 1, so this is still
the practice.

In the PTG theory, the elementary particles are associ-
ated with deformations of the space-time manifold, with
the deformations capable of being modeled by the GA.



The author’s previous paper[9] shows that if one assumes
the existence of a subquark particle called the “binon”,
it is possible to not only derive the SU(3) x SU(2) x U(1)
symmetry of the elementary particles, but it is possible to
derive the geometric form of the operators corresponding
to charge conjugation C, parity complementation, P and
time reversal T', as well as those corresponding to spin,
Sa, Sy, S, electric charge ()., weak charge, @, weak
hypercharge, 7, and weak isospin, 71, 72, and 73. In ad-
dition, the algebraic ideals corresponding to the binons
were derived. This paper will use these results.

I. DERIVATION OF THE DIRAC EQUATION

We begin with the massless Klein Gordon wave equa-
tion as defined as a GA valued function defined on the
PTG plus time:

07U (z,y,2,8;t) = *V2U. (2)

The above is a set of 16, 2nd order differential equations.
As such, its general solution has dimension 32. That is,
to specify a solution, we must supply 32 initial values.

In order to convert Eq. (2) into a pair of 1st order
equations, we can break the equation into two equations
with the following assignments:

o = U,
oV = AV, (3)

but this still leaves us with a 2nd order operator in the
second equation. A better way to break the equation up
is to postulate a pair of fully linear equations:

at‘IfA = CV\IJB,
2Ty = VI, (4)

The above two equations are symmetric, so we really
don’t have a preference for which one should be associ-
ated with the original ¥ of Eq. (2), hence the symmetric
labels A and B. Counting degrees of freedom, since we
now have two waves, ¥ 4 and U g, we still have 32 degrees
of freedom in the two waves.

Note that when Dirac took the square root of the Klein
Gordon equation, he was simultaneously changing the al-
gebra on which it was defined. That is, he began with
a Klein Gordon equation which used scalar real valued
wave functions and he ended up with the Dirac equa-
tion that uses 4—vector complex valued wave functions.
In that context, it made sense to equate ¥4 and ¥p in
Eq. (4). In the present context, with more mathematical
machinery available, we will retain the two halves of the
equation as distinct parts of the total wave.

This paper is more concerned with symmetries of the
wave equation Eq. (2) as a set of differential equations
than the symmetries of the GA alone. So in order to
simplify our notation, as well as to follow the notation of
our previous paper, [9] we will add to the basis set for

the GA a notational vector . This vector will be used to
distinguish between ¥4 and ¥p.

As an extension similar to complexification, the prop-
erties of ¢ are that it squares to one, and commutes with
all elements of the GA. With these definitions, the wave
equation Eq. (4) can be rewritten as:

t0,(¥a) = cV(i¥p),
t0,(tVp) = cV(La). ()

Writing ¥ = W 4 4 i ¥, this puts Eq. (3) into the simple
form:

t6,¥ = cVU. (6)

In the above, ¥ now represents a wave with twice the
degrees of freedom as the GA from which it takes values,
with the extra degree of freedom defined by multiplica-
tion by #. This derivation of the “Dirac” equation is
distinct from the usual in that we are not throwing away
half the degrees of freedom of the associated Klein Gor-
don equation. Our need to do this is due to the fact that
we are making a geometric interpretation of each of the
degrees of freedom.

Redefining the speed of light ¢ to a GA constant c,,
and multiplying by ¢ gives the generalization of the Dirac
equation as:

T = ¢, V(i). (7)

The requirement that the above equation square to the
Klein Gordon equation, and therefore a restriction on
values of ¢, is:

AAV? = ¢, Ve, V. (8)

The above, as an operator equation, has to be true when
applied to any function, so we can cancel the right most
V on each side:

AV = ¢, Ve,. (9)
Of the basis elements of the GA, only the scalar terms 1
and ¢ commute with V, and only the psuedoscalar terms
zTyzs and x/yﬁ anticommute. The remaining basis el-
ements neither commute nor anticommute with V and
can be eliminated if one considers the operator equation
applied to simple functions like f = z. Accordingly, ¢,
is restricted to be of the form:

Ca = Cli + ct£+ Cpﬁzs + Ccl’/y;?ta (10)

where ¢, ¢, ¢p, and ¢, are real constants. Substituting
this into Eq. (8), taking into account the commutation
and anticommutation rules, multiplying out and equating
the nonzero terms gives:

= c%—{—cf —cf}—cz,

0 = 2c1¢ — 2¢pc. (11)



This consists of two equations in four unknowns, so we
expect a solution set with two independent parameters.
A convenient solution parameterized by two real valued
numbers, a,, and ., is as follows:

c1 = c(cosh(ap + a;) + cosh(ay — a.))/2
¢ = c(cosh(ay, + o) — cosh(ay, — a,))/2
¢p = c(sinh(ap + a.) + sinh(a, — a;))/2
¢, = c(sinh(ap + a.) —sinh(a, — ac))/2.  (12)

In addition to this solution, as an obvious symmetry one
can negate ¢,. We will ignore such solutions, which cor-
respond to a reversal in time. The usual Dirac equation,
with scalar speed of light, corresponds to o, = a, = 0.
Now that we have a generalization to the speed of light,
we will again set ¢ = 1, which simplifies several interest-
ing properties of ¢,. The first is that powers of ¢, are
particularly easy to compute:
(Ca(apa ac))™ =cq (map, ma), (13)
for m any real number. Thus ¢, has an inverse. Another

useful property is the commutation relation between c,
and V:

caV = V(cy) (14)

The above is a restatement of Eq. (9). More generally,
¢o commutes with even elements of the GA, and “inverse
commutes” with the odd:

Ca(Pe + ®,) = Boco + Boc, (15)

These relationships make calculations with ¢, easy.

The ¥ of Eq. (7) is defined on the hidden dimension s.
The Dirac wave function, of course, has no such depen-
dency. To convert Eq. (7) into Dirac form requires that
we take a Fourier series over the hidden dimension as
is explained more fully in the author’s previous paper.[9,
Appendix] This breaks the equation into the fermion fam-
ilies:

fat‘I}n = (caV3 + n/Rs 18 )\Ilna (]‘6)

where n indicates the Fourier series term, V3 is the
3—dimensional GA differential operator, R is the hid-
den dimension radius, and n/R; = m, is an effec-
tive mass. Multiply on the left by (ca(ap,a.)) 0% =
ca(—0.5a,, —0.5a,) to get:

;0310 ,, = (V3c;%°% + n/Ry ic*?5)¥,,  (17)

where V3 has been commuted with ¢f%% by use of
Eq. (14). Since ¢;%® everywhere multiplies ¥,, on the
left, and since this is just an invertible GA constant, we
can take ¥! = 705V, and multiply on the left by § to

get:

é\t 6&1’; = (§V3 + mnl)\p;u (18)

That this is equivalent to the Dirac equation can be seen
by expanding V3 = &0, + §d, + 20, and using the fol-
lowing equivalencies:

Y =st, 4’ =ys,
Y =w5, =7, (19)

and verifying that the Dirac equation’s anticommutation
relation is satisfied:

T A = 29" (20)

Therefore, Eq. (16) is a representation of the Dirac equa-
tion. Since ¥, has more degrees of freedom than the
1 of a Dirac equation, it is clear that the equation is a
multiple representation of the Dirac equation.

We have shown two facts. The first is that our gen-
eralization of the derivation of the Dirac equation does,
in fact, produce a representation of the Dirac equation.
But we have also shown what the relation is between dif-
ferent representations of the Dirac equation according to
the choice of ¢,. That is, to account for a change in the
choice of ¢, from the standard model choice of 1, one
may simply multiply ¥, or ¥ on the left by ¢, °-5.

Unfortunately, the Dirac equation was chosen more for
its ease of solution than for its ability to represent ele-
mentary particles. The linearity of the Dirac equation
is somewhat incompatible with the requirements of the
Pauli exclusion principle. The standard model is able
to get around this difficulty through the use of configu-
ration space, but for a fundamental theory, a nonlinear
wave equation is more useful. Accordingly, we will next
generalize our results of this section to nonlinear wave
equations.

II. NONLINEAR WAVE EQUATIONS

As an example of a nonlinear wave equation, consider:
00 = ¢, V(T?), (21)

As before, we can commute ¢f%® around V to get:
30?0, ¥ =V (c;050?), (22)

If we define ¥’ = ¢ %5Uc/9% we can put this equation
into the following simple form:

0, ¥ =V (¥'?), (23)

Thus we can use our generalized speed of light in nonlin-
ear wave equations as well.

Note that the above example indicates that a more
general method of taking account of the effect of ¢, is
the transformation:

\I’I — 0505‘1'0;1;05 (24)

It is clear that the above transformation is compatible
with both linear and nonlinear equations. It is also clear



that this transformation will provide isomorphisms for
groups based on multiplication of elements of a GA such
as the “Lounesto groups” of the previous paper.[9] For
the remainder of this paper, we will stick to the example
of the Dirac equation. The nonlinear equation Eq. (21)
will be the subject of a later paper, but we will use this
transformation for transforming functions for the remain-
der of this paper.

III. PROPAGATORS AND PARTICLES

In the standard model of the elementary particles, the
identification of the elementary fermions is by a method
separate from the Dirac equation itself. That is, the same
Dirac equation suffices for each elementary fermion, with
the same equation shared by all the particles. We have
previously introduced[9] a more general Dirac equation
that can be separated into individual Dirac equations,
one for each particle type.

This concept of a single Dirac equation whose ideals
correspond to the various particles is somewhat at vari-
ance with the use of configuration space in quantum me-
chanics. This issue will be addressed in a later paper. For
the purposes of this paper, it suffices to keep the config-
uration space concept that all particles of a particular
type use the same wave equation (and therefore share
the same form of propagator), but at the same time to
reject the apparent coincidence that particles of distinct
types happen to share an identical wave equation.

Another way of putting this is to recognize that, the
fact that the GA allows us to write a multiple representa-
tion of the Dirac equation, implies that we can associate
each of the contained represenations with a particular
particle type, and use that representation when propa-
gating that type of particle. Since the solutions are iso-
morphic, there is no actual difference in practical calcu-
lations. The various particles are still being propagated
according to the same simple Dirac equation, it’s only
that we will remember that we actually have a multiple
representation of the Dirac equation, so we can associate
a different representation of the Dirac equation with each
particle type.

This method of associating the propagators with a rep-
resentation that depends on the particle type is a way of
introducing geometric principles to quantum field theory
with the least amount of change to the traditional tech-
nique, so we will use it for the remainder of this paper.

IV. C, P, T AND 6y

In a previous paper[9], geometric derivations of the op-
erators corresponding to spin, charge, parity and time

were posited to be:

TS, = Z@/Qv

Tt = 7':/27
T, = §/2,
Te = st)2. (25)

Since  and 7 ares only notational vectors, they commute
with ¢,. Thus, from the point of view of the geometrical
elements, the first two of the above operators are even
and therefore commute with ¢, while the second two are
odd and inverse commute. Accordingly, we can compute
how these operators transform by Eq. (24):

r_
Tg, = TSz,
!
Tt = T,
! _ —1
T, = TpCa = C4 Tp,
! _ -1
T, = TeCo =Cy' T (26)

The above is not surprising in that it is known that the
weak force violates only parity and charge symmetry in
a “maximal” way. Time reversal symmetry T' = CP is
also violated, but at a very small rate.[10, §4.12]

The lowest order diagrams contributing to 7' sym-
metry violation require flavor mixing among all three
fermion families, and are therefore suppressed both by
the small size of the off diagonal Cabibo-Kobayashi-
Maskawa (CKM) matrix elements and the high order of
the diagram.[3, §22.7] A later paper devoted to fermion
masses will discuss the CKM matrix in the context of the
PTG.

At low energies, the weak force is weak, compared to
the electromagnetic force, almost entirely due to the mass
of the exchange bosons associated with the weak force.
The subject of fermion and boson masses will be dis-
cussed, along with the CKM matrix, in a later paper. But
even ignoring the W+ and Z° masses, the weak coupling
constant is slightly weaker than the electromagnetic cou-
pling constant. In the standard model, the difference is
described by the Weinberg angle (sometimes called “weak
mixing angle”), fy. We will now derive a restriction on
the values of a;, and a. based on the relative strengths
of the weak and electromagnetic couplings. We will use
sin? (Ow) = 1/4.

The operators for electromagnetic charge, ., and
weak charge, @, were derived [9] as:

TQe = —(§+§%)/4,
Tow = —(8 — st — 2izyt ) /4. (27)

The z@ term is the operator that distinguishes between
left and right handed versions of the same particle. It is
therefore related to mass and its use will be delayed to a



FIG. 1: Relationship of a;, and a. to give sin?(dy ) = 1/4.
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later paper. Applying Eq. (24) to Eq. (27) gives:
TOe = TQeCas
= —((cp +co)1+ (cp + o)t
+(c1 +¢)é+ (c1 + ¢;)st ) /4 (28)
T(I,Qw = TQw\/gca,

= —((¢p —ce)l = (cp — co)t
+(Cl — Ct)§ — (Cl — Ct)(;t )/4 (29)

To obtain the a restriction on a, and a., use Eq. (12) to
obtain:

The = —(sinh(ay, + ac) + cosh(ay, + a0)d)(1 +£)/4,
Tclgw\/g = —(sinh(ay, — a.) + cosh(a, — a.)§)(1 —1)/4.
(30)

The electromagnetic charge @, is therefore multiplied by
a factor of cosh(ay,+a.), while the weak charge @' is mul-
tiplied by cosh(a, —a.). In order for these two factors to
give an increase in the electromagnetic coupling, relative
to the weak coupling, by a factor of cot(fy) = /3, the
restriction on a, and . is:

cot(yw) = cosh(ay, + o)/ cosh(ay — a;). (31)

For sin®(fw) = 1/4, the resulting restriction on a, and
a. is shown in Fig. (1).
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