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The “Proper Time Geometry” (PTG) is described as an alternative to the usual “Lorentz-
Minkowski Geometry” (LMG) of space-time. The PTG provides identical results in classical me-
chanical calculations, but promises simplified quantum mechanical structures due to the fact that all
particle speeds are made identical to c. Examples of calculations in classical relativity are included.

PACS numbers:

I. CAUSALITY AND LORENTZIAN
RELATIVITY

Historically, quantum mechanics was developed on the
same geometry of space-time that Einstein described in
his 1904 paper on Special Relativity (SR), the Lorentz-
Minkowski Geometry (LMG). Since then, the unification
of gravitation and quantum mechanics has resisted all
efforts. Perhaps the problem is with the use of the LMG.
While this familiar geometry is conceptually the simplest
that supports SR, it is not unique in that achievement.
This paper describes an alternative geometry that does
the same through the use of a hidden dimension.

The theory of Quantum mechanics gives a few clues
that the LMG is not the correct one for describing a lo-
cal geometry of space-time. The most obvious clue is that
of causality. “Quantum field theory solves the causality
problem in a miraculous way, ... We will find that, in the
multiparticle field theory, the propagation of a particle
across a spacelike interval is indistinguishable from the
propagation of an antiparticle in the opposite direction.
When we ask whether an observation made at point x0

can affect an observation made at point x, we will find
that the amplitudes for particle and antiparticle prop-
agation exactly cancel – so causality is preserved.” [1,
page 14] Thus causality is preserved for the results of the
computations of the theory, but they are not present in
the mechanism itself.

The problem of causality arises due to the lack, in
SR of a preferred reference frame. We will assume that
there is a preferred reference frame, and therefore that
the propagation of particles across spacelike intervals is
not a causality problem. Of course we will also assume
that the structure of space-time makes it impossible, or
exceedingly difficult, to locate that preferred reference
frame. From a calculational point of view, this small
detail is no change from the current theory. It is a philo-
sophical choice only, but a choice that will allow us to ex-
plore geometries other than the LMG. Nor is this choice
of interpretation new, it dates to the dawn of relativity
and is known as Lorentzian Relativity (LR). Lorentzian
Relativity has been generalized to match General Rela-
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tivity, but for the purposes of this paper, we will stick
with a locally flat geometry.

Lorentzian relativity does not deny that the laws of
physics appear identical in all inertial reference frames,
but nevertheless asserts that there does exist a preferred
reference frame. As with standard relativity, speed slows
down the perceived passage of time, so that an object
at rest in the preferred reference frame ages faster than
objects moving with respect to it. The difference between
Lorentzian relativity and standard relativity is essentially
that standard relativity holds that time itself is slowed
down by speed, while Lorentzian relativity holds that
only the perception of time is slowed down by speed.

As a theory identical to standard relativity, Lorentzian
relativity suffers from two defects. The first is that since
it is presumed impossible to detect the preferred reference
frame, there is no obvious reason to include it in a the-
ory. The second is that the theory gave no explanation
for why moving clocks would be slowed down. Against
these defects, the primary advantages of the Lorentzian
theory are that it eliminates the problems with causality
between space-like separated events, and that it keeps
space and time separate rather than mixing them into
space-time. From a phenomenological point of view the
two theories are identical, and since standard relativity
has fewer assumptions, it is the preferred theory. But
from an ontological point of view, it is difficult to deny
that Lorentzian relativity is the better, especially with
quantum mechanics indicating that particle influences,
though not causal signalling, can exceed the speed of
light.

II. THE PROPER TIME GEOMETRY

Both versions of special relativity share the same met-
ric: [6]

ds2 = dt2 − (dx2 + dy2 + dz2). (1)

But the interpretation of the t coordinate is different be-
tween the two theories. With standard relativity, t is
the time coordinate appropriate for this reference frame
only. In Lorentzian relativity, assuming that the above
reference frame is the preferred one, t is promoted to
be the universal time for all reference frames. In both
theories, the dimensional coordinates do not include s,
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which is instead defined as the metric distance. That s
is not included as a dimensional coordinate is surprising,
given that ds is the only measurement that observers on
different reference frames can agree on.

It is therefore natural to promote s from a parameter
that is specific to a particular moving body, to a coordi-
nate that is generic to space-time. The time experienced,
or age, of a moving body is therefore equivalent to the
progress made in the s dimension. In order to allow for
collisions between objects of different ages, the s dimen-
sion must be cyclic and small. Call the radius of the s
dimension Rs. Since this topology results from promot-
ing the proper time parameter s to a coordinate, it will
be called the “Proper Time Geometry” (PTG) in this
paper, and the relativity theory converted to it will be
called “Proper Time Relativity” (PTR).

These three versions of relativity share the same met-
ric, Eq. (1), but with a different interpretation of the vari-
ables. While SR treats t as a coordinate, both Lorentzian
relativity and PTR promote t to a special status, univer-
sal time. Where LR and PTR differ is in the treatment
of s. Since the PTG treats s as a coordinate, it is nat-
ural to group it with the other coordinates and rewrite
the Minkowski metric in this form:

dt2 = ds2 + dx2 + dy2 + dz2. (2)

The above equation gives the amount of time that is
needed for the movement of a massive or massless body
by (ds, dx, dy, dz). In the PTG therefore, all bodies move
at the speed of light, but part of that movement is in the
hidden dimension. Various odd attributes of the theory
of relativity, such as the huge amount of energy present
in matter, and the impossiblity of matter exceeding the
speed of light, become natural consequences of a uni-
versal speed for all matter and energy. And since the
equation of motion of waves are much simpler when the
waves are presumed to all travel at the same speed, the
wave mechanics version of the PTG promises to be sim-
pler than wave mechanics in the LMG.

III. WICK ROTATIONS

Another geometrical clue from quantum mechanics is
the use of the Wick rotation. A Wick rotation consists of
promoting time t from a real variable to a complex one,
and then calculating with imaginary time. It is mirac-
ulous that this mathematical artifice simplifies, rather
than complicates quantum mechanics. Wick rotations
are common enough to be found in almost any modern
QFT book, [1, pp 292-3] [2, pp 475-6] [3, pp 12,261] and
the technique is universal in lattice gauge theory, [4] the
only technique at present for calculating the properties
of composite particles such as the mass of the proton.

A Wick rotation changes the Lorentz-Minkowski 4-
dimensional geometry into a 4-dimensional Euclidian ge-
ometry. With this change, a quantum mechanical theory
becomes a statistical mechanical theory with ~ playing

FIG. 1: Particle moves from A to B in Lorentz-Minkowski
Geometry. The world line of a photon is shown as γ. Hori-
zontal coordinate is x, a spatial position. Vertical coordinate
is t, the time coordinate of this particular reference frame.
Proper time is a derived value, not a part of the topology,
and so is not shown.
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the role of the temperature. The only difference be-
tween the Wick rotated LMG and the PTG is that the
PTG makes the 4th dimension cyclic, while a Wick rota-
tion keeps it unbounded. In actual practice with Lattice
Gauge theory, even this difference is eliminated as their
simulations are done with all four dimensions cyclic. The
implication is that ~ should be interpreted as the tem-
perature of background fluctuations in space-time.

IV. PARTICLE PATHS

The geometrical difference between SR and PTG can
be illustrated with figures showing how the two theories
describe the motion of a particle in one dimension. With
SR, the relevant coordinates are x and t, while s is only
a calculated parameter and does not appear in the ge-
ometry of space-time. Positions in space-time include t,
and are described as events. For a body moving at half
the speed of light, from event A to event B a familiar il-
lustration showing the world line of the body, along with
the world line of a photon simultaneously emitted at A
in the same direction is illustrated in Fig. 1. The metric
length of the photon path is zero, while the path of the
particle moving from A to B is

√
(82− 42) = 6.9, which

is the amount of proper time experienced by the particle.
The same situation for the Proper Time Geometry is

shown in Fig.2. Proper time s has been promoted to a
coordinate, giving the particle an extra degree of free-
dom that is cancelled by the added requirement that the
particle move at the speed of light. Since the particle re-
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FIG. 2: Particle moves from A to B in Proper Time topology.
The path of a photon is shown as γ. Horizontal coordinate
is x, a spatial position. The circular coordinate is s. Global
time is a parameter, not a part of the topology, and so is not
shown. The proper time experienced by the particle can be
found by counting the number of trips it makes around the s
dimension, 6.9 in this illustration.
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quires 8 units of time to traverse the path from A to B,
the length of that helical path is 8 units long. The par-
ticle experiences a passage of time given by the distance
it travels in the s direction. As with the LMG case, the
proper time interval is about 6.9 units of time. The scale
for the s dimension has been shown so that one revolu-
tion is one unit of time. Consequently, the path of the
particle winds around the s dimension a little less than 7
revolutions. The photon does not experience the passage
of proper time, so its path does not wind around the s di-
mension, and its path is coincident with the x axis. The
length of the path traversed by the photon is 4 units, so
the time required for its traversal is 4.

The Proper Time Geometry adds an extra variable to
standard relativity, but the maximum size of that vari-
able goes to zero as Rs → 0. In later papers, when
considering wave behavior and quantum mechanics, Rs
will play the role of a parameter in the theory, but for
the purpose of matching the calculations of SR, no par-
ticular value of Rs is needed, we require only that it be
sufficiently small. Therefore, as far as matching LMG,
this theory has no change in the number of free parame-
ters.

When converting a classical mechanical calculation
from the PTG to LMG, the value of the s coordinate
is simply ignored. If Rs is infinitesimal, the error in do-
ing this will also be infinitesimal. When converting to
the PTG, the s value can be arbitrarily set to zero, again
with an infinitesimal error. Since the errors in converting
between the two geometries is infinitesimal, they cannot
be distinguished by any classical measurement. Exam-
ples of calculations using the PTG are included in the
Appendix.

V. NEW FOUNDATION FOR QUANTUM
MECHANICS

With the PTG, the Lorentz symmetry of space-time is
broken in three obvious ways. First, as with Lorentzian
relativity, a preferred reference frame is assumed. This

suggests thought experiments that could distinguish a
preferred reference frame. Second, very short distances
tend, on average, to be longer than LMG would give.
Third, time, or at least the perceived passage of time for
a moving body, may have a discrete nature to it. While
losing Lorentz symmetry might be seen as a severe de-
fect to a theory, each of these differences has been sug-
gested before. The preferred reference frame, or ether,
is popular in quantum theories. And recently the loop
quantum gravity theories assume both a complete fail-
ure of the metric for short distances, and that time will
advance in discrete steps. In comparison, the changes to
the standard model of quantum mechanics described in
this paper are quite limited. In addition, an infinitesimal
violation of Lorentz symmetry has the effect of allowing
a quantum theory based on the geometry to avoid the
Coleman-Mandula “no go” theorem. [5] This suggests
that an explanation for the internal symmetries of QM
may exist in the external geometry of space-time as will
be demonstrated in a following paper.

This paper has been entirely about space, time and
movement, rather than momentum or energy. There are
several reasons for this. The mass, energy and momen-
tum of elementary particles are radically modified by the
Quantum Field Theory process of renormalization or re-
summation. By contrast, space and time are not, so it is
likely that as far as looking at a unifying field theory, we
can expect our large scale idealization of space and time
to be a more stable guide than our idealizations of mass,
momentum and energy. The equations of SR having to
do with matter can be translated directly over into the
PTG, but that the result is not simplified we attribute to
resummation effects as will be described in a later paper.

That the PTG can be used for classical mechanics gives
hints about the underlying structure of particles in quan-
tum mechanics. A Wick rotation converts Lorentz boosts
into Euclidian rotations in 4 dimensions. Thus it is nat-
ural that in the PTG all particles travel at the same
speed, c, and the underlying field theory should be one
where all particles of the same type possess the same
momentum. This would explain the mystery of why the
standard model requires “chiral” wave states. The chi-
ral wave states are massless and handed, and travel at
the speed of light, and it is these wave states, that are
created and annihilated at vertices. The choice of chiral
wave states depends on the frame of reference, an onto-
logical problem that theories with a preferred frame of
reference avoid. The effect is that “relativity” applies
not to physics and space-time, but instead only to the
results of calculations.

Later papers will describe a new foundation for quan-
tum mechanics based on the insights available from the
PTG.
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APPENDIX: CLASSICAL SPECIAL RELATIVITY
CALCULATIONS IN PTG

In order to make clear how calculations in the PTG can
match those of the LMG, this appendix provides detailed
calculations for time dilation and length contraction us-
ing both techniques. Lorentz relativity caclulations are
identical to those of SR.

1. Time Dilation

Problem: A spaceship travels 3 light years away form
earth, at a speed of 0.6c, and then returns at the same
speed. What is the proper time experienced on the Earth
during the voyage, and what is the proper time experi-
enced on the spaceship?

Special Relativity Solution: The voyage requires
3/0.6 = 5 years each way for a total of 10 years. This is
the proper time experienced on the Earth. The spaceship
experiences a time dilation of (1 − 0.62)0.5 = 0.8, so the
proper time experienced on the spaceship is 10× 0.8 = 8
years.

Proper Time Solution: The spaceship starts at the
point (x, y, z, s) = (0, 0, 0, 0). Align the x axis with
the direction of travel. The velocity of the spaceship
on the outgoing voyage is therefore given by the vec-
tor (0.6, 0, 0, 0.8). The 0.8 value is required to make the
speed of the spaceship work out in total be 1. The space-
ship’s position as a function of the global time t is there-
fore:

(0, 0, 0, 0) + (0.6, 0, 0, 0.8)t1 (A.1a)

Setting this equal to (3, 0, 0, s1) gives t1, the global coor-
dinate time for the arrival of the spaceship at its desti-
nation, and t1 is therefore 5 years. Note that the value
of s1 is unspecified, as the total length of the hidden
dimension is negligible as compared to the many light
years of travel. Since the proper time component of the
velocity of the spaceship is 0.8, the total elapsed proper
time on the outgoing voyage of the spaceship is therefore
0.8 × 5 = 4 years. Similarly, the return trip uses a ve-
locity of (−0.6, 0, 0, 0.8) and results in a coordinate time
passage of 5 years and a proper time for the spaceship of
another 4 years. The result is, of course, identical to the
Special Relativity result.

2. Lorentz Contraction

A rod flies lengthwise through a laboratory with a
speed of 0.923c. The lab measures the length of the rod
as 6 meters. How long is the rod measured in a coordi-
nate system moving with the rod?

Special Relativity Solution: The Lorentz contraction
factor is (1 − 0.9232)−0.5 = 2.6, so the proper length of
the rod is 6m× 2.6 = 15.6 meters.

Since the Proper Time topology does have a preferred
coordinate system, the question is not as clear as it is in
special relativity. But in any given coordinate system,
the constancy of the speed of light provides a technique
for measuring length. Accordingly, the rod can be mea-
sured in its own frame of reference by calculating the time
required for light to travel the length of the rod. Since
proper time is a property of individual particles, rather
than dimensional objects such as rods, the length of the
rod will have to be measured by computing the time re-
quired for the light to travel down the rod, be reflected
at the end, and then travel back to the point of origin on
the rod. The proper time experienced by the end point of
the rod during this flight will indicate (when multiplied
by c) twice the length of the rod.

So let the rod begin at position (0, 0, 0, 0) through
(6m, 0, 0, 0), and set the velocity vector for the rod to
be (0.923, 0, 0, 0.384) so that it moves in the +x direc-
tion. The light signal starts at (0, 0, 0, 0) and proceeds
with a velocity vector of (1, 0, 0, 0) until it meets with
the other end of the bar at time t1. The light direction
is then reversed, and it travels with velocity (−1, 0, 0, 0)
until it meets up with the trailing end of the bar at time
t2. The length of the bar, in the reference frame of the
bar, is then 1/2 the proper time experienced by the trail-
ing end of the bar from 0 to t2. The equations for t1 and
t2 are therefore:

(0, 0, 0, 0) + (1, 0, 0, 0)t1
= (6, 0, 0, 0) + (0.923, 0, 0, 0.384)t1, (A.2a)
(1, 0, 0, 0)t1 + (−1, 0, 0, 0)(t2 − t1)
= (0, 0, 0, 0) + (0.923, 0, 0, 0.384)t2. (A.2b)

Since our world does not distinguish between the hid-
den proper time coordinate, the equalities need only be
established for the first three coordinates.

The solution is t1 = 78 meters, and t2 = 81.12 meters.
The proper time experienced on the trailing edge of the
rod is, by time dilation, 0.384 of t2, which gives 31.2. Half
of this is the proper length of the bar, which is the same
as the value given by special relativity. Therefore, both
theories show the Lorentz contraction of the bar to be the
same. Since the two theories are the same in both time
dilation and Lorentz contraction, any dynamical problem
can be converted between them, and the results of stan-
dard relativity translate directly. Thus the problem can
be worked with the simpler methods of SR with only a
philosophical difference.
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