Preprint

Phase Velocity of de Broglie Waves

Carl Brannen”®
(Dated: November 20, 2004)

It’s been long known that the phase velocity of de Broglie’s matter waves exceeds the speed of
light. Modern analysis ignores the phase velocity in favor of the group velocity, since this is what
corresponds to particle speeds. This paper examines the problem from the point of view of a hidden

dimension.

PACS numbers:

This is the fourth paper in a series by the author de-
scribing a new foundation for quantum mechanics based
on the Proper Time Geometry (PTG). However, this pa-
per is independent and can be read without reference to
the previous papers. For an introduction to the PTG
and a brief discussion of how clasical relativistic mechan-
ics works in the geometry, see [1]. For a geometric de-
scription of the internal symmetries of the fermions, see
[2]. For an explanation of how the symmetries of charge
conjugation and parity complementation come to be vi-
olated, see [3]. For work by other authors using similar
modifications of the geometry of special relativity see [4],
[5], [6], [7]-

In 1923, L. de Broglie proposed that matter possesses
the same wave particle duality as light, with similar rela-
tions between frequency and energy. [8] As a consequence
of time dilation and the relation E = fiw, [10] de Broglie
concluded that there must be associated with a parti-
cle travelling at speed v, a wave that travels at (phase)
speed:

vy =c/V1—v%=c/p. (1)

Since this speed is greater than ¢, he referred to the wave
as fictitous. The conventional answer to this oddity is to
note that the group velocity of a wave packet will be less
than ¢, and to stress that this is what must be associated
with the velocity of the particle. For example, in A.
Messiah’s excellent introduction to quantum mechanics,
the details of the calculation for group velocity are given,
but he fails to explicitly mention that the phase velocity
exceeds ¢. [9, CH.II, §3]

The presence of a hidden dimension in the PTG (and
similar geometries) suggests that the explanation for the
faster than light phase velocity is that the wave is being
considered only in 3-dimensions. That is, a wave travel-
ling with a phase velocity of ¢ in the PTG, when trans-
lated into a wave in the usual space, will give a phase
velocity in excess of ¢. This effect is commonly seen at
the beach, where the velocity of breakers along the shore
exceeds the phase velocity of the incoming waves. See
Fig. (1).
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FIG. 1: Illustration of the increase in phase velocity when
a hidden dimension is ignored. The true wavelength in 2
dimensions, J, is increased to A\, = A/ cos(6) when only the
dimension is considered. The phase velocity is A/27w.

Adding a small hidden dimension to the usual geome-
try of space-time allows matter waves to travel with speed
¢, but with a phase velocity exceeding ¢ in the usual 3
dimensions. The PTG includes just such a hidden di-
mension. From the point of view of relativity, the hidden
dimension corresponds to proper time. The PTG shares
the same metric as Lorentz geometry, but with the proper
time, s, promoted to use as a coordinate instead of just
a parameter:

dt* = ds* + dz* + dy® + d2°. (2)

Thus the space defined over the coordinates (z,y, 2, s)
is a metric space with signature (+ + ++). The hidden
dimension s is cyclic, with a radius of R;. Thus waves
will be required to be periodic with period 27 R;.

In the PTG, all classical particles travel at speed ¢ [1],
and so are naturally associated with waves that travel at
this same speed. Accordingly, let k = (ky,ky, k., k) =
(k, ks) be a wave vector, and let w be the wave frequency,
with the wave given by:

11[}($,y,2,8;t) :%(exp(i(k'r_(‘*)t-i'(ﬁO)))a (3)

where r = (z,y, 2z,s) = (r,75) is a position, ¢ is a phase,
and the use of the imaginary unit is only for convenience
in calculation. The requirement that the phase velocity
of the wave, in 4 dimensions, be ¢ gives

c k| =w. (4)



The phase velocity in 3-dimensions is given by the dis-
tance of one wavelength divided by the time for one cycle:

ves = (27r/ kg+k§+kg)/(27r/w)
= /(1 — (ks/|K])?). (5)

This is greater than ¢, but if k, is small compared to k, it
is very close to ¢, corresponding to a particle that travels
at close to the speed of light, which gives these waves a
natural interpretation as the chiral fermions.

Since the s dimension is cyclic, by continuity we must
have that:

ks2nRy = 2mn = ks = n/R, (6)

for some n an integer. In the PTG, the various fermion
families correspond to the terms in a Fourier series ob-
tained by integrating over s [2]. We therefore require that
ks = 1/ R, for fermions in the electron family, ks = 2/R;
for fermions in the muon family, etc. Note that ks can be
either positive or negative. Thus the speeds of the chi-
ral fermions are not quite ¢, and, under the assumption

that there is a single frequency shared among them, their
speeds decrease with increasing family number:

on = (1= (ko [N = (1 = (n/|K|R)*)>. (1)

In order to allow these waves to propagate in 3 dimen-
sions at approximately ¢, we require only that |k|Rs >>
n.

It is interesting that when a plane wave is considered
in a 3—dimensional space, the points in that space where
the phase of the wave are equal to a given constant form
a series of parallel, unconnected planar surfaces. The
case where n = 0, which corresponds to the bosons of
the PTG, is similar. But for the fermions, the points
in the PTG, where the phase is equal to a constant, are
connected. This gives an intuitive explanation for how
it is possible, in the standard model, that particles rep-
resented by plane waves can have movement despite the
absence of any position or frequency dependence in the
probability or momentum densities.
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