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This paper analyzes the structure of the elementary fermions using the Geometric Algebras derived
from several candidates for the manifold of space-time. One candidate, the Proper Time Geometry,
is shown to be consistent with a simple interpretation of the fermions that requires subparticles
here called “binons.” An explicit solution for the fermion structure is shown. The result is a fully
geometric version of the standard model particle system.

PACS numbers:

This paper describes geometry of the fermions from
the point of view of the Geometric Algebras (GA) of
serveral candidate manifolds. In addition to the standard
Lorentz-Minkowski Geometry (LMG) and the Proper
Time Geometry (PTG), the mathematical machinery
necessary to analyze other manifolds is developed. The
PTG is an alternative geometry for Special Relativity
(SR) that shares the same local metric equation as the
LMG, but a different interpretation of the coordinates,
and a different global topology.[1]

The first section provides a brief and intuitive intro-
duction to the GA of David Hestenes, which, technically,
are Clifford Algebras whose vector bases are the tangent
spaces to the manifold with a metric chosen to match
that of the manifold. [2, Chap. 1-2] The second sec-
tion discusses the importance of primitive idempotents
in quantum mechanics, and shows the structure of the
primitive idempotents of the GAs of the LMG and PTG.

The third section analyzes the structure of the quan-
tum numbers of the elementary fermions in light of the
results of the first two sections, and the attributes of a
compatible GA are deduced. Here it is shown that the
elementary fermions are not likely to be elementary, but
instead are each composed of three sub particles, and
that a good candidate for the space-time manifold is the
Proper Time Geometry.

The fourth section derives the (intrinsic) geometric
operators corresponding to the discrete symmetries of
charge conjugation, parity negation, and time rever-
sal (C, P, and T). The fifth section demonstrates
the SU(3) x SU(2) x U(1) symmetry of the elementary
fermions. The doublet and dual singlet representation
structure of SU(2) is derived. The sixth section derives
the SU(3) symmetry, the binon binding potential, and
the fermion spatial wave functions.

I. THE GEOMETRIC ALGEBRA (GA)

This paper takes the point of view that the elemen-
tary particles are vibrations inherent to some media that

*Electronic address: carl@brannenworks.com; URL: http://www.
brannenworks.com

makes up space-time, that space-time can be modeled as
a manifold, and that the vibrations of space-time can
be modeled with the GA associated with that space-
time manifold. The objective is to provide an ontological
model for the fermions that requires fewer and simpler
assumptions that that of the standard (phenomenologi-
cal) model.

I chose to use the GA in this endeavor for several
reasons. First, there is a good history of success in
modeling physics with GAs. [2] Second, use of GAs is
not widespread, so it is more likely to have undiscov-
ered pleasant surprises. Third, there are no unphysical
degrees of freedom in a GA, which makes them more
compatible with the derivations of gauge theory. In
other words, since this is to be an ontological model,
the fact that the GA does not require the use of quo-
tient spaces makes the ontological interpretation much
simpler. Fourth, the fact that a GA is a Clifford Algebra
defined on a manifold allows the extensive machinery of
Clifford Algebras to be brought to bear. Fifth, the GA
provides a natural description of displacements of a con-
tinuum in a way that is similar to the use of tensors in
General Relativity, but without the unphysical degrees
of freedom. Since, at the time of this writing, the GA is
not widely used, we will begin with a brief and intuitive
introduction.

A GA is a generalization of the algebra of real num-
bers (scalars). By “algebra” is meant a collection of
“numbers” with rules indicating how to add and multiply
amongst them. The elements of the GA are particularly
suited to describing small deformations in a media. In
the case of this paper, the small deformations are those
of space-time itself. If one interprets a manifold of n-
dimensions as a media subject to deformations, then one
can model the deformations that remain within the me-
dia (as opposed to the situation of a media present in
a higher dimensional space that can deform into dimen-
sions not present in the media) using the GA. Since these
are small deformations, they are linear in that one can
consider adding two deformations and the result can also
be interpreted as a deformation. The deformations there-
fore form a vector space. As numbers, elements of a GA
are elements of a Clifford Algebra. The standard desig-
nation of Clifford Algebras is CLP*? where p is the number
of positive signature basis elements and ¢ is the number
of negative signature elements. The sum, p + ¢ therefore



corresponds to the total dimension of the manifold as-
sociated with the GA. Since a GA is associated with a
particular manifold, it forms a natural field of numbers
for functions defined on that manifold. It is this natural
use of the GA that forms the basis for its use in quantum
field theory.

The 2™ basis elements for a GA can be labelled as
the 2™ distinct subsets of a set of n basis vectors of the
tangent space of the underlying manifold. As an example,
consider the “Proper Time Geometry” (PTG) a manifold
of 4 dimensions with signature + + ++. The elements
of the GA at a point in the manifold depend only on the
dimension and metric signature of the manifold, so if we
are interested only in the local properties of the GA, we
can specify this GA as GA(+ + ++), or use the Clifford
Algebra designation of C£*°. A third notation would
be GA(PTG) or if we wish to take special note of the
coordinates used in the manifold, GA(zyzs).

In the case of the GA(PTG) the underlying manifold
is of dimension 4, so the GA(PTG) has dimension 2% =
16. We will use the following labels, derived from the
standard coordinate names, for the sixteen (canonical)
basis vectors of GA(PTG):

{17 ;I/" y7 Z’ S’ "1;'87 y87 ZS7 xy? yz’ :I/'Z,

73, 755, 75, 7%, Ty} (1)

The canonical basis vectors are of particular importance
in the GA. They can be interpreted as deformations of the
underlying manifold. Of the above sixteen deformations,
the first few are easiest to visualize. The 1 deformation is
the scalar deformation and corresponds, when positive,
to compression, and when negative, to rarefaction.

It is the standard in the literature to write 1 = 1, as
1 is the multiplicative identity of the algebra, but I will
rebel against this usage, at least in this paper, as I wish to
make it clear that for this theory, 1 is a specific deforma-
tion of space or space-time, and not just a multiplicative
identity. The absence of a deformation is 0, the additive
identity of the algebra, and this I agree to write without
the hat.

The vector deformations, Z,7y, Z, and § correspond to
displacements in those directions. The bivector deforma-
tions, Ts, ¥s, 28, Yz, 2z, and Ty are rotations defined in
their associated planes.

The trivector or psuedovector deformations, 323, zxs,
zys and zyz are difficult to visualize, but act like axial
vectors. Finally, the psuedoscalar deformation zyzs is
similar to the psuedoscalars used elsewhere in physics. It
is the only deformation that is handed, in the sense that
its mirror image cannot be brought into congruence with
the original deformation through a rotation.

The deformations are defined in the sense of modifica-
tions to the metric of space-time. They are not intended
to be descriptions of literal displacements as if space-
time were embedded in some higher dimensional space.
If there were an embedding, one might suppose that it
could be modeled with the four vector deformations only.

FIG. 1: Four deformations of space are shown. The scalar
deformation 1 is in density. The vector deformations & and §
move space-time in their respective directions. The bivector
deformation zy rotates space-time in the x — y plane.
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With this caveat in mind, it may be useful to obtain an
intuitive feel for the canonical basis elements by examin-
ing Fig. (1), which shows the deformations of the z — y
plane.

Addition of GA elements is as with any vector space.
The basis notation helps as a reminder of how to mul-
tiply, in that, for example, &9 = zy. Multiplication is
associative, but not commutative, and the square of ba-
sis vector element is, depending on the signature, either
1 or —1. For the GA(PTT) the signature is positive so
the squares of basis elements are all unity: ## = 1. The
product of two distinct vector basis elements is anticom-
mutative: 2y = —gZ. This can be thought of as a reversal
of the direction of rotation defined by the bivector. These
rules, along with the usual distribution of multiplication
over addition, are sufficient to define multiplication of
arbitrary elements of a GA.

Note that in a GA with signature of 2 and y of (++) or
(—=—), we will have 7y° = —1. Elements that square to
—1 can be thought of as geometric equivalents of imag-
inary numbers. There are many examples where imag-
inary numbers in standard physics equations have been
replaced with GA elements, and the literature gives one
a feeling that most of the small group of physicists us-
ing GA eschew imaginary numbers having no geometric
interpretation. This paper will follow this trend. In this
paper, compactification will provide a geometric meaning
to the complexified geometries.

For the reader unaccustomed to the GA or Clifford Al-
gebras, a few calculational examples, with the signature
of (+ 4+ ++) will assist in reading this paper, as well as
provide motivation for the symmetry calculations done



later.

(# +1i9)® = O(nilpotent)
(0.5 4 0.5% )2 (0.5 + &) (idempotent)
zy? = —1 (rep. ofC),

{iyz, —izz,izy} (rep. of SU(2))

An operation called “reversion” is sometimes useful. Re-
version is indicated with a dagger and reverses the order
of multiplication: (AB)" = BTA!. Reversion has no ef-
fect on scalars, vectors or psuedoscalars, but it has the
effect of negating bivectors and trivectors. Note that if
a multivector can be factored into vectors, its product
with its reverse is a scalar, and one can therefore define
an inverse for such elements. But as can be seen from
the examples, not all elements of a GA possess a multi-
plicative inverse.

David Hestenes has applied the GA to the Dirac equa-
tion, and has found that the equation and its wave so-
lutions can be written in the GA with some insight into
their geometric properties. His work is defined in a vari-
ety of a GA called the “Space Time Algebra” (STA). The
STA is obtained by using four unit vectors for the usual
four directions in special relativity, and assuming that the
square of the basis vector is positive in the case of time
and negative in the cases of the three spatial dimensions.
We can designate this GA as GA(STA), GA(+ — ——),
GA(tzyz), or CL.

Hestenes’ analysis is based on the Dirac equation. The
{7"}7—o matrices are reinterpreted as unit vectors in the
STA. The characteristic equation for the gamma matri-
ces, YHyY +yYy* = gHY, is satisfied when the signature
of the associated GA is chosen to match. Unfortunately,
the Dirac equation describes a complicated mixture of a
collection of very distinct fermions. Here “distinct” is
used in the sense of distinguishable. For example, when
the Dirac equation is used to describe an electron, there
are, in fact, from the point of view of the chiral ele-
mentary particles, four very different particles involved,
right and left handed electrons, and right and left handed
positrons.

This paper will take the position that the Dirac equa-
tion is not a fundamental feature of the underlying field
theory, but is instead simply the result of a renormaliza-
tion or resummation of the propagators of a set of four
distinct fermions, as will be discussed in a later paper.
Accordingly, this paper will analyze Hestenes’ STA, but
from the point of view of the chiral wave states, rather
than the Dirac equation.

II. PRIMITIVE IDEMPOTENTS

Following Julian Schwinger’s 1955 lectures on quantum
kinematics, but specializing to the case of the electron
fermion family, [3, Chap. 1.1] let A denote a set of char-
acteristics that distinguish the 32 particles in a family F
of elementary fermions. We will define the QCD colors

as {1,2, 3}, and use the following designations for such a
family:

F = {eL,eR,éR,éL,I/L,I/R,ﬂR,ﬂL,
UL, Y1R, U1 R, UL, U2L, U2R, UaR, UsL,
Usr, usk, Usk, Usr, dir, dir, dig, di1,
dor,dog, dog,dor, dsr, dsg,dsg, dsi}

Let a; be an elementary particle in F. Let M (a;) sym-
bolize the selective measurement that accepts particles
of type a1, and rejects all others. One can imagine some
sort, of Stern-Gerlach apparatus, though since quarks are
permanently bound it will have to be an imaginary ap-
paratus. We can define addition of measurements to be
the less selective measurement that accepts particles of
any of the included types:

M(a1)+M(a2) :M(a1+a2). (2)

Two successive measurements can be represented by mul-
tiplication of the measurement symbols. Because of the
physical interpretations of the symbols, addition is as-
sociative and commutative, while multiplication is at
least associative. One and zero represent the trivial
measurements that accept all or no particles. Clearly,
0+ M(a') = M(a'), 1M (a') = M(a')1 = M(a'), and
0M (a') = M(a')0 = 0, so the set of measurements form
an algebra. The “elementary” measurements associated
with these 32 fermions satisfy the following equations:

M(a')M(a') = M(a'), (3)

M(a*)M(a®) = 0, if a' # a®, (4)
32

> M) =1 (5)

Schwinger goes on to analyze incompatible measure-
ments, such as spin in two different directions, but these
simple results are enough for our purposes.

The repetition of the elementary particles in various
families suggests that the higher families are simply ex-
cited states of the electron family. Since the excited
states of standard quantum mechanics are formed by dif-
ferences in spatial waveforms, rather than changes to the
field of which the wave is composed, we naturally assume
the contrapositive, and suppose that the differences be-
tween the fermions of a single family are due only to non
spatial differences in their wave functions. With this nat-
ural assumption, the 32 elementary fermions should be
able to be distinguished by elements of the GA rather
than by spatially distinct wave functions. That is, we
should be able to use the Clifford Algebra to describe
the electron family, rather than require the use of the
full GA wave functions as defined on the manifold.

The assumption that the elementary fermions of any
family can be described by the Clifford Algebra of the



space-time manifold, without requiring an understanding
of their wave functions, considerably simplifies the task of
deriving their structure. The mathematicians having al-
ready solved these problems, we shall define the concepts
of the Measurement Algebra in their language. When an
element of an algebra is its own square, as in Eq. (3), the
mathematicians refer to it as an “idempotent”. When
two idempotents of an algebra multiply out to zero as in
Eq. (4), they are called “perpendicular”.

The measurements here are assumed elementary in the
sense that the elementary particles they describe can-
not be broken (we assume) into subparticles. This cor-
responds to the concept of an idempotent that cannot
be written as the sum of two perpendicular idempotents,
which the mathematicians call a “primitive idempotent” .
Finally, it is easy to prove that (complete) sets of perpen-
dicular primitive idempotents for Clifford Algebras add
to unity as in Eq. (5). Therefore, our assumption about
the elementary fermion families requires that we examine
the mathematical literature for information about sets
of perpendicular primitive idempotents of Clifford Alge-
bras.

A left (right) “ideal” 7 of an algebra CL is a subalgebra
that is closed under multiplication by elements of the
algebra on the left (right). That is, CL Z = Z. A minimal
ideals is one that has no nontrivial subideals. It is easy to
show that a primitive idempotent e,, generates a minimal
left ideal I = CLe,,.

Ideals are particularly important in differential equa-
tions because they can be used to derive symmetry rela-
tions and reduce dimensionality of systems of differential
equations. For example, as shown in the appendix, for
GA valued functions defined on the PTG manifold, the
Dirac equation can be derived from:

Oy =V, (6)

where 9 is a function on the space-time manifold that
takes its values from the associated GA. If {e,} ; is a
complete set of perpendicular primitive idempotents (as
we are postulating to represent a family of elementary
particles), then the above equation can be rewritten as
N independent equations, each of the form:

O (Yen) = V(ven), (7)

Thus a complete set of primitive idempotents gives a way
of breaking a complex representation of the Dirac equa-
tion into individual representations, one for each elemen-
tary particle. This subject will be covered at length in a
later paper[4].

Theorem (Lounesto [5]). A minimal left ideal of a
Clifford Algebra CL£P? is of the type Z = CLPe, where

¢= %(1+el)...%(1+ek) (8)

is a primitive idempotent of CLP'? and {e,, }X_, are a set

of elements of CL£?'? such that

€n€m = €Em€n,
en, € Canonical basis,
e =1,
{en}r_, generates a group of order2f,  (9)

k = q—ry_p and r; are the Radon-Hurwitz numbers,
defined by the recurrence formula r; ;5 = r; + 4 and

t 01234567
r; 01223333°

In this paper, we will refer to a set of elements that
satisfy Eq. (9) as “generators of the Lounesto group”,
and we will refer to the generated group as the “Lounesto
group”. As an example, the STA is equivalent to CL"®
and the above formula gives ksT4 = 1. A choice for e;
is the time vector, t, or a product of a space and the
time vector such as zt. This gives a typical primitive
idempotent of %(1 + zt), and a complete set of primitive
idempotents as {1 (1 + zt),1(1 - 21)}.

Unfortunately, these sets of primitive idempotents each
include only two candidates, not nearly enough for the
32 fermions in a family. On the other hand, it is at least
somewhat heartening that the fermion family does have
a power of two elements. Accordingly, we now consider
ways in which we could naturally increase the number of
commuting elements in the canonical basis, and therefore
the number of primitive idempotents.

Note that the above theorem was for a real Clifford
Algebra. If we complexify the algebra, we will obtain
more canonical basis elements that square to 1 so the
theorem does not apply. Also note that the product of
two primitive idempotents is also a primitive idempotent.
One can therefore pick k elements out of the Louneseto
group, and as long as the chosen elements generate the
whole group, they can be used as an alternate set for
the purposes of defining the primitive idempotents. We
will later use this fact to simplify the structure of the
fermions.

At this point, it is useful to introduce a modification
of the usual notation for complexified Clifford Algebras.
Instead of considering complex linear combinations of ele-
ments of the canonical basis for the real Clifford Algebra,
we will instead double the size of the canonical basis by
including imaginary canonical basis elements. For exam-
ple, in addition to Z as a basis element, we will include a
basis element iz whose properties are those of iz. With
this notation, ¢ can be interpreted as a vector that com-
mutes with all other basis elements (and therefore with
all algebra elements), and that squares to —1.

Manifolds with a compactified (hidden) dimension,
such as the PTG, can be complexified naturally by com-
plex Fourier series over the hidden dimension, as is shown
in the appendix. The 1st, 2nd and 3rd order terms in the
Fourier series are interpreted as the electron, muon and
tau families of fermions, and the Oth order term is inter-
preted as the bosons. This unites the propagators for all
the particles into a single wave function.




The PTG does not include time in the geometry. It is
therefore natural to suppose that a wave state in the PTG
may require two GA fields, one for the displacement from
neutral, the other for the rate of change or momentum
of the displacement. For the purposes of this paper, this
doubling of the field variables can be modeled with the
addition of another commuting basis vector. Unlike the
case with the STA, ¢ has no role in the PTG, so we can
use ¢ to designate the momentum. This is an expansion
of the basis elements similar to that of complexification.
For example, the basis element Ty defines a rotation in
the = — y plane, while the basis element zyt defines the
time rate of change of the amount of rotation in the x —
y plane. Addition is as usual with vector spaces. For
multiplication, the basis vectors i and { commute with
everything else and square to £1.

In order to accustom the reader to the notation, it is
useful to include a concrete example for eigenvector equa-
tions in the complexified STA. The complexified STA, as
opposed to the standard STA, has pairs of canonical ba-
sis elements that square to one and also commute. For
example, {i, z@} are a set. This defines a complete set
of 22 = 4 primitive idempotents:

{(1£ )1 iwy)/4} (10)

A set of Lounesto generators can be interpreted as
a set of commuting operators with the primitive idem-
potents as eigenvectors. The eigenvalues are +1, which
is somewhat disconcerting to a physicist accustomed to
half-integer eigenvalues, so we will instead consider the
operators to be halves of the commuting canonical ba-
sis elements. Per the example calculations, this has the
beneficial effect of putting the operators into the stan-
dard form for Lie algebras. The resulting eigenvector
equations for the 7, = [0.5¢] operator are as follows:

n(1+ D1 +izy)/4 = +0.5(1+H)(1 +izy)/4,
(1= (1 +izy)/4 = —05(1— (1 +izy)/4.(11)

The eigenvector equations for the 0.5@'2:\3/ operator are
similar, but with signs for the eigenvalue in the series
+—+-.

Following this example, we can connect the notion of
idempotents and ideals with the usual physics terminol-
ogy of eigenvector and eigenvalues Accordingly, we can
abbreviate the designations of the eigenvectors. Given
a set of Lounesto generators given by {e,}*_,, we will
define the operators and eigenvectors as follows:

T; = 0.5€j, (12)

|n,...l,m >= (0.5+mney)...(0.5+1er—1)(0.5+mey), (13)

where n,...[,m are the eigenvalues, and take values of
+1/2. The symmetry structure of the eigenvectors is that
of a k-cube. Since the eigenvalues are either positive or
negative 1/2, a natural notation for the eigenvectors, for

example for the 3-cube, is {|——— >, |——+ >, .. |+++ >

}.

The value of k for real GAs is given by the Lounesto
theorem. For a complexified GA of dimension n, the
value of k is easily seen to be n/2 if n is even, and (n +
1)/2 if n is odd, with primitive idempotents generated
by a set of k elements with the same requirements of the
Lounesto theorem, Eq. (9). For those manifolds that do
not explicitly include time, an extra commuting operator
(i.e. 0.5t ) accounting for momentum versus position
must be included and this increases the value of k£ by
one.

We can now compute the value of k, and therefore
the expected symmetry of a fermion family for various
choices of the space-time manifold. Geometric canon-
ical basis vectors with positive and negative signature,
and notational canonical basis vectors, along with the k
value are shown here:

Manifold||p(+) | a(-) |not.||k|Symmetry
STA t | xyz 1 (line
xyz | t 2|square
PTG Xyzs it ||3|cube
xyzs| it ||3|cube
xyzs| t i ||3|cube
t |xyzs| i ||3|cube

The largest value of k is for the PTG and similar ge-
ometries complexified through compactification, and the
resulting symmetry is that of the cube, with 8 funda-
mental fermions. The electron family includes four times
too many, but there are only 8 electron family leptons,
and the next section will show that these do have a cubic
symmetry.

The question of whether or not the “internal” sym-
metries of particles, other than spin, can be nontrivially
connected to the “external” geometry of space-time has
already been answered, in the negative, by various “no-
go” theorems, most notably that of Coleman and Man-
dula. [6] These theorems all assume SR, and therefore
perfect Poincaré symmetry. This is a subtle argument
for rejecting any candidate manifold for space-time that
mixes space and time. The PTG, in addition to assum-
ing a preferred reference frame, explicitly rejects time as
part of the geometry. Thus the Poincaré symmetry pos-
sessed by the PTG is not perfect. On the other hand, the
Appendix shows that the simplest wave equation in the
PTG is equivalent to a multiple rep of the Dirac equa-
tion, which is generally thought to be the standard for
relativistic waves. In a certain sense, the PTG is in the
same position as Quantum Field Theory. While the the-
ory itself is not apparently Poincaré invariant, the results
of computations are.

I11I. THE FERMION CUBE

The fermions in a family can be designated by their
SU(2) and U(1) symmetry quantum numbers t3 (weak
isospin) and to (weak hypercharge), or alternatively, by



FIG. 2: Table of standard model fermion quantum numbers.

ts to | Q QV3/2
er| 0 1|1 1)2
er|-1/2 -1/2| -1 -1/2
vL|1/2 12 0 1
vr| O 0 0 0
dor| 0 -1/3[1/3 1/6
doy|-1/2 1/6|-1/3 -5/6
w.r|1/2 1/6]2/3  2/3
wr| 0 2/3[2/3 -1/3

FIG. 3: The fermion cube. The vg is not shown for clarity.
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their electric charge @ and “neutral charge” (or “weak
charge”) @Q'. [7, Table 6.2] The values for @ and Q' are
related to t3 and tg by

Q =13 +t01
Q' ts cot(6y) — to tan(f,,), (14)

where 6,, is the Weinberg angle. We will use sin?(f,,) =
1/4. A table of the usual quantum numbers for fermions
is shown in Fig. (2). Values for antiparticles are the neg-
atives of the values shown. When the tg and ¢3 numbers
are plotted against each other, the result is clearly cubic
as shown in Fig. 3

The figure of the elementary fermions makes clear that
while there is an obvious cubic structure to the leptons,
the quarks are intermediate to pairs of leptons along four
parallel edges of the cube. For concreteness, we will de-
fine the cube according to the n, [, and m vectors as
shown in Fig. (3). Both of the undetected neutrinos, vg
and 77, end up at the origin, and we have to choose
which goes with the visible “top” part of the cube and
which is hidden. Since the rest of the top of the cube
(i.e. {PR,er,er}) are all antiparticles, we will place the
v;, with them. The n vector therefore runs in the direc-
tion from the 7; towards the eg, the [ runs towards the
€r, and the m runs towards the vg.

Fig. (3) shows that the leptons do have a cubic struc-
ture and can be interpreted as primitive idempotents.
According to the illustrated choice of n, [, and m, and

using the order |n,l,m >, the assignments for the eight
leptons are as follows:

vp=|—-——>, er=|+-——>,
VR=|——+>, er=|+—+>,
ER=E|—+=>, vp=|++->,
EL=|—++>, vr=|+++> (15)

The leptons are thus associated with the primitive idem-
potents of a GA, but the presence of the quarks suggests
that we can do better if we assume that the quarks and
leptons are bound states of three subparticles each.

Since the designation for the primitive idempotents has
the feel of binary numbering to it, I will call these subpar-
ticles “binons”. The leptons correspond to bound states
of three identical binons, so each lepton has the natural
association with binons shown in Eq. (15). The quarks
are mixed bound states of three binons, with mixtures
only possible among binons that share [ and m quan-
tum numbers. With this assumption, binons form bound
states among three particles that differ at most by the n
quantum number. If the three binons are identical (pre-
sumably they differ in spatial wave state, or are related
by rotation of elements in the GA), the wave state is a
lepton, while the mixtures correspond to quarks. Defin-
ing the bound states by |nilymy,naloms, nglzmg >, the
fermions are obtained as follows:

p=|l-— -, —-——>
dir = |[+————————>
g = |———+——+-—>
erR = |+——+——+—-—>
ér = |—+——+—,—+—->
up = |[++—,—+——+-—>
dip = |—+—++—++—->
vp = |+ 4+ -+ >
VR = |——+,——+,——+>
diy = |+—+,—-——+,——+>
g = |-+, +—+,+—-+>
er. = |+—-+,+—++—-+>
er = |—++,—++,—++>
wRr = |[+++,-++-++>
dip = |—4++,++++++>
v = |+++H+++H+++ >

(16)

where the other quark colors are obtained by rotating the
odd binon through the three positions.

In the standard model, the charges of the quarks do
not depend on color, so given the assignment of binon
quantum numbers, it is possible to derive the relations
for t3 and tg in terms of n, [ and m. Taking account of
Fig. (2) and Eq. (3), we get a matrix equation for 3 and



to:
0 -1 3/2 —3/2 —3/2
_1/2 —1/2 3/2 —3/2 3/2
1/2 —1/2 32 3/2 —3/2
o o | | 32 32 302
0 —1/3 | =| —1/2 —3/2 =32 [ M (D)
—1/2 1/6 _1/2 —3/2 3/2
1/2 1/6 _1/2 3/2 -3/
0 2/3 “1/2 3/2 3/2

Solving this equation, and taking account of Eq. (14), we
obtain the solution:

tys = (I —m)/6,
two = (l+m—2n)/6,
Qv = (I-n)/3,
QuW3 = (I+n—2m)/3. (18)

The subscript b is for binon, and signifies that these quan-
tum numbers are for the binons rather than the fermions.
The symmetry operators, on the other hand, have values
3x as large as these.

Since n, I and m were chosen so that the vector n+[{+m
is perpendicular to the plane of the standard quantum
numbers, the above equations can be written as differ-
ences of quantum numbers. This is a particularly inter-
esting way to write geometric basis elements, and there is
consequently an easy derivation of the SU(2) symmetry
of the standard model, which we will demonstrate in (V).

IV. CHARGE, PARITY AND TIME

As can be seen from Eq. (18), this paper has, so far,
been concerned with additive quantum numbers. But
the Lounesto group generators commute, and since their
eigenvalues are 1, they can also be associated with mul-
tiplicative quantum numbers. This suggests that we can
unite the notation for additive and multiplicative quan-
tum numbers if we redefine the multiplicative quantum
numbers to fit the same relationship we have already de-
rived for n, I, and m quantum numbers.

Since the Lounesto group generators carry eigenvalues
of +1, their products do the same, so we can naturally
associate each element of the Lounesto group with an
operator, and define multiplication of the operators by
the multiplication of the Lounesto group. We will refer
to the operators (which carry eigenvalues of :t%) by 7 and
the Lounesto group elements by e, with the appropriate
suffices. For example,

Trim = €nim/2 = €n€iem |2 = ATy T T, (19)

It is clear that not too much should be made of the n, I, m
quantum numbers. Since all 7 nontrivial elements of the
Lounesto group correspond to operators that have valid
eigenvalues among the binons, rather than just e,, e,
and e,,, it is clear that our choise of the generators for

that set was somewhat arbitrary. For example, the set
{€nim> —€1m, en1}, would also have worked as the genera-
tors of the Lounesto group, but would not have allowed
the computation of the charge operators as a linear sum
of these generators.

The fact that C, P, and T can be used as operators
with quantum numbers in standard quantum mechanics
suggests that we can find geometric elements of the GA
that correspond to each, and that these elements will
multiply to unity. Note that it is more usual to have C PT
multiply to a phase factor, but that our fermion notation,
with its explicit interpretation of i as a rotation operator
in the hidden dimension s, does not have explicit phase
factors. The phase factors will reappear when waves are
considered in the full GA functions on the space-time
manifold; there they will represent relative rotations in
the s dimension. Here we are considering only Clifford
Algebra elements that represent particles and ignoring
their (z,y, z, s) position, and therefore also ignoring their
phase.

The motivation for looking at P, C, and T" as Lounesto
group elements is the observation that C', P, and T' com-
mute and multiply to unity. This is exactly the group
multiplication rule among a Lounesto group of order 4.

Note that the definition of the C'PT operators here
is slightly different from that usually used in physics.
Here we are defining, for example, the 7p operator as
an operator that has eigenvalues of i% according as the
eigenfunction has an “intrinsic” parity of +1 or —1. The
usual definition of the parity operator P is to have that it
changes the parity of its operand. [8, Eq. (3.123)] Thus
the corresponding eigenvalue relations, for this paper as
compared to the standard use are:

Tp|£ > = (£/2)|£ >, (this paper)
P|+ > = ny|£ >, (standard)
P|+ > P = #£|+ >, (standard) (20)

where 74 is a possible phase. The C' and T operators
correspond to 7¢ and 77 in similar fashion. With this
change, C', P and T are brought into the same form as the
Lounesto operators. Since C, P, and T are to commute
with the Schwinger particle measurements, we must have
that C, P, and T correspond to operators in the Lounesto
group.

Clearly spin in the z direction, S, is also in the
Lounesto group. Since it is known how spin transforms
with rotations of the coordinates for the manifold, there
is a natural choice for the spin operators:

= iyz/2, Ts, = —ix2/2, Ts, = ixy/2, (21)
The fact that S, must be in the Lounesto group places a
restriction on the remaining elements in that they must
commute with S,. The possible choices must be in the
(complexified) subgroup generated by {zy,2,5,1}. But
any element that has a zy factor will be transformed
by coordinate rotations of the real spatial dimensions,
and this is incompatible with the definitions of C, P,



and T. Thus the possible choices for those elements of
the Lounesto group that will correspond to P, C, and T’
are reduced to {1, 5, 7yz, zyzs} x {1,}. Any two of the
elements in {3, 7yz,Tyzs} anticommute, so the possible
choices for C, P, and T include the following alternatives:

{3,st, 1} 1
{izyz, izyzt, i} 11
{zyzs, myzst i} 1IL (22)

Each of these includes a natural choice, ¢, for 7.

The first selection is interesting in that there is no men-
tion of z. Since we are representing a chiral particle mov-
ing at nearly ¢ [10] in the +z direction, perhaps Lorentz
contraction reduces deformations in that direction. The
direction of travel in the s direction, st can be used as
C, that is, to distinguish between particles and antipar-
ticles. Intrinsic parity is then defined as §, in recognition
of the concept that z,y,z,s form a manifold and so, at
least locally, parity in (z,y,z) can be obtained by ro-
tation in (z,y, z,s), leaving s negated. This alternative
gives a particularly simple form for the coupling to pho-
tons, and it will be the one used for the remainder of this
paper.

Internal 3-d parity, in the form of zgy\z is explicitly
included in the second choice, but this alternative would
leave the internal binons without any explicit use of §.
In addition, this alternative includes imaginary numbers.
While the fermions have a geometric interpretation of %,
according to the Fourier series complexification process
the bosons do not, and we would like C, P, and T to
apply to bosons as well as fermions. The third choice
is the only one that includes a 4-d chiral element of the
geometry. Neither of the other two have such an element
even in their full Lounesto groups including S, .

With the selection of the first alternative, the choices
for C, P, and T give:

Ts: =es:/2= izy/2,

TC 260/2: ,;5/2,

Tp =ep/2= §/2,

T =ep/2= t/2. (23)

The full Lounesto group is then {1, es.} x{1,ec,ep, er}.

In order to assign specific geometric elements to the
binons, we must define their quantum numbers with re-
spect to es., ep, and e. We can then use our geometric
definitions, Eq. (23), to find e,, e;, and e,,, and then
to define 73, 79, @, and @’ using Eq. (18). In order to
do this, we must decide on the multiplicative quantum
numbers for the elementary particles.

Particles should carry a positive 7¢ eigenvalue, an-
tiparticles a negative. The intrinsic parity for antipar-
ticles is known to be the negative of that of the particles,
but are otherwise unknown. If we assign the same parity
to the electron and neutrino 7p and 7¢ will carry identi-
cal quantum numbers, so we choose the electron to have

FIG. 4: Table of binon/lepton multiplicative quantum num-
bers.
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positive parity and the neutrino to have negative. The
quantum number for 77 is then determined by CPT = 1.
The resulting quantum numbers are shown in Fig. (4).
Solving for the S,, C', P, and T in terms of e,, ¢; and
e, gives:

€Sz = €nlm, €p = —€,
ec = ep, er = —ey. (24)

Solving for e,, ¢; and e,, gives:

e, = ec = st,
e = —ep = —§,
em = —eg.er.= —izryt. (25)

Using Eq. (18), the additive quantum operators, after
multiplying the right hand side by 3 to account for the
composite nature of fermions and dividing by 2 to ac-
count for the conversion from e to operator, are calcu-
lated as:

T = —(3—dxyt)/4,
T0 = —(§+Z@+2§t)/4’
TQ = —(§+§f)/4v
Torys = —(5— st — 2izyt) /4. (26)

The role of the hidden dimension, s, in coupling to ex-
change force bosons is clear. Also note that the coupling
to the photon is particularly simple. Presumably this
fact is associated with the masslessness of the photon.

V. FERMION SYMMETRY

There exists in the literature at least one interesting at-
tempt to place the standard model SU(3) x SU(2) xU(1)
symmetry into a GA. [9] That attempt, however, has cer-
tain disadvantages compared to this paper. First, it uses
a complexified version of the STA without any physi-
cal justification for complexification. Second, it fails to
identify any particle states. Third, while it locates the
symmetry, it fails to show that the particular represena-
tions, for example the singletons of SU/(2), are naturally
found in the STA. Fourth, it says nothing of why fermions
come in families. In short, it demonstrates the symmtery,



not the individual particles. GAs are equivalent to ma-
trix algebras, so that it is possible to find the standard
model algebra, using matrix methods, in a GA is not too
surprising.

Given the geometric version of the 75 generator of weak
isospin SU(2), we can now derive a geometrical form for
the other two generators. First, we need the geometric
form for total weak isospin. Examining Fig. (2), it is clear
that the total weak isospin operator must return 3/4 on
UR, €R, €L, and vy, and zero on the other binons. From
Eq. (15), we see that e, returns 1 on binons with total
isospin of zero, and —1 on binons with total isospin of
3/4. Therefore, the total weak isospin operator is given
by:

72 =0.375(1 — en) = 0.375(1 — dzyt).  (27)

Note that (73)2 = 0.125((1 — izyt), so we will look for 75
and 71 to square to this same value. Also note that e, =
0.5(1 — ZZ@) is a projector. This operator projects out
the doublet part of the subalgebra. The perpendicular
projector, 0.5(1 + @f) projects out the singlet part of
the subalgebra. The dimensions of these two subalgebras
are clearly identical, thus the doublet and dual singlet
form for weak isospin.

To find 7y and 7, first note that these elements will
have to be in the ideal generated by 72. Inside that ideal,
we will have a spin—1/2 irrep of SU(2). The Pauli spin
matrices therefore provide a clue in that o3 anticommutes
with the other spin matrices. Consequently, we list the
canonical basis elements that anticommute with 73, and
look for a linear combination that squares to (73)?. A
solution is:

(& — iyst) /4,

T =
T = —(iws +yt)/4,
T3 = —(5—imyt)/4. (28)

There are various other solutions, for example, one can
multiply both 7 and 7 by £ to get a form where § instead
of & appears alone, but there are no solutions that treat
z and y on equal footing. This suggests that any isospin
mixed state particles cannot be rotationally symmetric
about their spin axis. The third choice for the C'PT
operators in Eq. (22) gives forms for 7 and 7» that are
rotationally symmetric.

VI. BINON BOUND STATES

Without knowing the spatial waveforms for how binons
are bound together to produce fermions, it is not possible
to explicitly derive the SU(3) symmetry. But under the
assumption that the interaction can be modeled as a pair-
wise potential, the presence of an SU(3) symmetry can
be argued from the discrete symmetries that apply. Let
ro3, T31 and 715 represent the distances between the three
binons. Due to Lorentz contraction, one expects that the

three binons will be in the same plane perpendicular to
the direction of propagation. Rigid rotations of the three
particles in that plane correspond to a U(1) symmetry.
Perhaps this has something to do with weak hypercharge.

In addition to distances between the binons, one must
also specify their relative positions in the hidden dimen-
sion s. Since s is a cyclic dimension, a natural way of
describing the relative positions of the binons is by using
their separation in 3-space as the magnitude of a complex
number and their angular separation S;; in s as the phase
of the complex number. The three complex numbers can
be used as a set of canonical coordinates for the binon
system. The canonical coordinates are a vector of three
complex values, which is a suitable object for application
of SU(3) symmetries with a triplet representation:

21 ra3€'°%
z9 = r31 6%831 . (29)
23 iz €'t

Under the assumption that the binding potential satisfies
an SU(3) symmetry in the above canonical coordinates,
we have derived that the binding potential can depend
only on the squares of the magnitudes of the three com-
plex numbers, and therefore on the distances between the
binons (and not on their relative phases):

Vi(r12,..-s23) = Vo((ra3)® + (rs1)® + (r12)?).  (30)

The assumption that the binding potential can be written
as a sum of pairwise potentials implies that the form of
those potentials is that of a linear harmonic oscillator:

Vi (r12, -.823) = ((r23)? + (r31)* + (r12)?) Vo, (31)

where Vj is a suitable constant. Thus the binding force
between binons is linear, as is suspected of the gluon
force between quarks, and binons are permanently bound
into fermions. With all three binons identical, the bound
state is evidently a singlet, but with one binon distinct,
the degeneracy is broken to show the SU(3) symmetry
as a triplet of colored particles.

The binons that make up a lepton are identical in the
sense that they all belong to the same ideal, but they need
not be identical with respect to their degrees of freedom
within that ideal, nor in their spatial (i.e. z, y, and 2)
dependency. Since we have ideals with a geometric in-
terpretation, we can study what the degrees of freedom
within those ideals are. This will give an interesting ex-
planation for why certain pairs of binons can mix to form
the quarks. Accordingly, we multiply out the ideals and
display them paired according to their ability to mix to
form quarks. This is shown in Fig. (5), and it is clear that
the mixing rule has to do with the notational degrees of
freedom, ¢ and t. When one notes that the degrees of
freedom that are not frozen out by the ideals is the sub-
algebra generated by {Z, 9, 2}, it becomes clear that the
binons that mix are able to have identical geometric (as
opposed to notational) degrees of freedom. In addition,



FIG. 5: Table of binon ideals. Quarks are mixtures formed
from each pair.
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the degrees of freedom that correspond to the notational
product it may also be identical.

The form of the binon potential, Eq. (31) suggests that
it is possible to model the binding force as an integral of
GA values over the manifold. The absence of mixing
outside of the 1 and it compatible pairs of binons implies
that such mixtures would be too high in energy to be
observed. This suggests that the ¢ and  parts of the ge-
ometry have less energy associated with them, as they are
of no concern in determining which binons can combine
to produce low lying bound states.

APPENDIX: FOURIER SERIES AND DIRAC
EQUATION

While the Dirac equation will be discussed at length
in a separate paper, [4] this is a good place to derive
solutions to the Dirac equation within the binon ideals
shown in Fig. (5). The simplicity of the derivation of the
Dirac equation, speaks well for applicability of the GA. In
addition, the presence of the Dirac equation shows that
the PTG, despite having no exact Poincaré symmetry,
nevertheless supports a fully relativistic wave equation,
and the simplicity of the Fourier series expansion suggests
that the fermion families are best modeled this way.

The simplest linear differential equation in the PTG
manifold, using the GA definition of the derivative, is
0,0 = VWU. Written out explicitly into coordinates the
equation is:

0¥ (z,y, 2,8;t) = (20, + YOy + 20, + 50,)¥. (A.1)
At this point, in order to make contact with the rest of
this paper, we will introduce the same notational vec-
tor  that was used to distinguish position and momen-
tum coordinates and replace the above equation with the
slightly less simple one:

t0,V(z,y, 2, 8;t) = (20, + 90y + 20, + 505)¥.  (A.2)
In this version, the rate of change of the position coor-
dinates depends on the spatial derivatives of the coordi-
nate positions and vice-versa. If we had failed to make
this substitution, we would end up with half the num-
ber of copies of the Dirac equation that we expect for
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each family. To see the effect of using Eq. (A.1) instead
of Eq. (A.2), one can replace { with 1 in the following
equations.

Take a Fourier series to eliminate the s dependence,
and thereby convert the ¥ a function defined on the PTG
manifold to a set of functions defined on (z,y, z;t), gives
(for the nth fermion family):

2n R, )
2,y 251) = / IR (2, y 2 sit) s, (A.3)
0

where R is the radius of the hidden dimension s, and
my, = n/R, will be an effective mass. Using Eq. (A.2) to
derive a differential equation for 1,, (and multiplying on
the left by st) gives:

stOpy = —(T80, + Y50, + 250, + mpi )by,  (A4)
This is in the same form as the Dirac equation with
the equivalences of 7* = st, 4/ = z;5. Note that the
4—vector of GA constants (&,ﬁ,gfs, Zs) satisfies the
same anticommutation relations as the Dirac equation
gamma matrices. This shows that Eq. (A.4) is closely
related to the Dirac equation. But since ¢, takes its val-
ues from the field of GA elements, which has far more
degrees of freedom than the Dirac equation’s 4—vector
of complex numbers, it should be clear that Eq. (A.4) is
a multiple representation of the Dirac equation.

The field of GA elements in the PTG has 2% = 64 real
degrees of freedom, which is enough for eight copies of the
Dirac equation. We can explicitly write these eight Dirac
equations in geometric form by multiplying Eq. (A.4) on
the right by the eight ideals Z,,;,;, shown in Fig. (5):

(A.5)
The result is eight copies of the Dirac equation, one for
each particle.

It is also instructive to derive the general plane wave
solutions to Eq. (A.4). We assume that ,, is in the form
¥, = exp(i(kx—wt))1)o where k is a 3—dimensional wave
vector, x is a 3—dimensional position, w is a frequency,
and ¢ is a GA constant. Specializing, as before, for
particles propagating in the +z direction so that kx =
k.z, and multiplying by i one obtains:

(w8 — k.28 — my)tbe = 0. (A.6)

A solution to the above is ¥y = ws — k.25 + m,,, subject
to the condition that

w? —k* =m?2. (A.7)

For m,, very small, the above equation shows that |k| is

slightly less than w, and therefore that the particles are

moving at nearly the speed of light, as would be expected

of chiral fermions. The 1) solution is nonzero when mul-

tiplied by any of the binon ideals listed in Fig. (5), so a



solution to the Dirac equation that is in the ideal for the
|nlm > binon can be calculated as:
¢nlm (X; t) = ei(kx)_Wt¢OInlm- (AS)

A general planar solution to the Dirac equation within
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the Z,,,, ideal can be written as:
’l/}nlm(x; t) = ei(kX)_Wt’l/}O K Inlm (Ag)

where & is any nonzero element of the subalgebra gener-
ated by {z,9,2}.
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