
Preprint
The Geometry of Fermions

Carl Brannen�(Dated: December 2, 2004)
This paper analyzes the structure of the elementary fermions using the Geometric Algebras derivedfrom several candidates for the manifold of space-time. One candidate, the Proper Time Geometry,is shown to be consistent with a simple interpretation of the fermions that requires subparticleshere called \binons." An explicit solution for the fermion structure is shown. The result is a fullygeometric version of the standard model particle system.

PACS numbers:
This paper describes geometry of the fermions fromthe point of view of the Geometric Algebras (GA) ofserveral candidate manifolds. In addition to the standardLorentz-Minkowski Geometry (LMG) and the ProperTime Geometry (PTG), the mathematical machinerynecessary to analyze other manifolds is developed. ThePTG is an alternative geometry for Special Relativity(SR) that shares the same local metric equation as theLMG, but a di�erent interpretation of the coordinates,and a di�erent global topology.[1]The �rst section provides a brief and intuitive intro-duction to the GA of David Hestenes, which, technically,are Cli�ord Algebras whose vector bases are the tangentspaces to the manifold with a metric chosen to matchthat of the manifold. [2, Chap. 1-2] The second sec-tion discusses the importance of primitive idempotentsin quantum mechanics, and shows the structure of theprimitive idempotents of the GAs of the LMG and PTG.The third section analyzes the structure of the quan-tum numbers of the elementary fermions in light of theresults of the �rst two sections, and the attributes of acompatible GA are deduced. Here it is shown that theelementary fermions are not likely to be elementary, butinstead are each composed of three sub particles, andthat a good candidate for the space-time manifold is theProper Time Geometry.The fourth section derives the (intrinsic) geometricoperators corresponding to the discrete symmetries ofcharge conjugation, parity negation, and time rever-sal (C, P , and T ). The �fth section demonstratesthe SU(3) � SU(2) � U(1) symmetry of the elementaryfermions. The doublet and dual singlet representationstructure of SU(2) is derived. The sixth section derivesthe SU(3) symmetry, the binon binding potential, andthe fermion spatial wave functions.
I. THE GEOMETRIC ALGEBRA (GA)

This paper takes the point of view that the elemen-tary particles are vibrations inherent to some media that
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makes up space-time, that space-time can be modeled asa manifold, and that the vibrations of space-time canbe modeled with the GA associated with that space-time manifold. The objective is to provide an ontologicalmodel for the fermions that requires fewer and simplerassumptions that that of the standard (phenomenologi-cal) model.I chose to use the GA in this endeavor for severalreasons. First, there is a good history of success inmodeling physics with GAs. [2] Second, use of GAs isnot widespread, so it is more likely to have undiscov-ered pleasant surprises. Third, there are no unphysicaldegrees of freedom in a GA, which makes them morecompatible with the derivations of gauge theory. Inother words, since this is to be an ontological model,the fact that the GA does not require the use of quo-tient spaces makes the ontological interpretation muchsimpler. Fourth, the fact that a GA is a Cli�ord Algebrade�ned on a manifold allows the extensive machinery ofCli�ord Algebras to be brought to bear. Fifth, the GAprovides a natural description of displacements of a con-tinuum in a way that is similar to the use of tensors inGeneral Relativity, but without the unphysical degreesof freedom. Since, at the time of this writing, the GA isnot widely used, we will begin with a brief and intuitiveintroduction.A GA is a generalization of the algebra of real num-bers (scalars). By \algebra" is meant a collection of\numbers" with rules indicating how to add and multiplyamongst them. The elements of the GA are particularlysuited to describing small deformations in a media. Inthe case of this paper, the small deformations are thoseof space-time itself. If one interprets a manifold of n-dimensions as a media subject to deformations, then onecan model the deformations that remain within the me-dia (as opposed to the situation of a media present ina higher dimensional space that can deform into dimen-sions not present in the media) using the GA. Since theseare small deformations, they are linear in that one canconsider adding two deformations and the result can alsobe interpreted as a deformation. The deformations there-fore form a vector space. As numbers, elements of a GAare elements of a Cli�ord Algebra. The standard desig-nation of Cli�ord Algebras is CLp;q where p is the numberof positive signature basis elements and q is the numberof negative signature elements. The sum, p+ q therefore
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corresponds to the total dimension of the manifold as-sociated with the GA. Since a GA is associated with aparticular manifold, it forms a natural �eld of numbersfor functions de�ned on that manifold. It is this naturaluse of the GA that forms the basis for its use in quantum�eld theory.The 2n basis elements for a GA can be labelled asthe 2n distinct subsets of a set of n basis vectors of thetangent space of the underlying manifold. As an example,consider the \Proper Time Geometry" (PTG) a manifoldof 4 dimensions with signature + + ++. The elementsof the GA at a point in the manifold depend only on thedimension and metric signature of the manifold, so if weare interested only in the local properties of the GA, wecan specify this GA as GA(+ +++), or use the Cli�ordAlgebra designation of CL4;0. A third notation wouldbe GA(PTG) or if we wish to take special note of thecoordinates used in the manifold, GA(xyzs).In the case of the GA(PTG) the underlying manifoldis of dimension 4, so the GA(PTG) has dimension 24 =16. We will use the following labels, derived from thestandard coordinate names, for the sixteen (canonical)basis vectors of GA(PTG):

f1̂; x̂; ŷ; ẑ; ŝ;cxs; bys; bzs;cxy;cyz;cxz;dyzs;dzxs;dxys;dxyz;[xyzsg: (1)
The canonical basis vectors are of particular importancein the GA. They can be interpreted as deformations of theunderlying manifold. Of the above sixteen deformations,the �rst few are easiest to visualize. The 1̂ deformation isthe scalar deformation and corresponds, when positive,to compression, and when negative, to rarefaction.It is the standard in the literature to write 1̂ = 1, as1̂ is the multiplicative identity of the algebra, but I willrebel against this usage, at least in this paper, as I wish tomake it clear that for this theory, 1̂ is a speci�c deforma-tion of space or space-time, and not just a multiplicativeidentity. The absence of a deformation is 0, the additiveidentity of the algebra, and this I agree to write withoutthe hat.The vector deformations, x̂,ŷ, ẑ, and ŝ correspond todisplacements in those directions. The bivector deforma-tions, cxs, bys, bzs, cyz, czx, and cxy are rotations de�ned intheir associated planes.The trivector or psuedovector deformations, dyzs, dzxs,dxys and dxyz are di�cult to visualize, but act like axialvectors. Finally, the psuedoscalar deformation[xyzs issimilar to the psuedoscalars used elsewhere in physics. Itis the only deformation that is handed, in the sense thatits mirror image cannot be brought into congruence withthe original deformation through a rotation.The deformations are de�ned in the sense of modi�ca-tions to the metric of space-time. They are not intendedto be descriptions of literal displacements as if space-time were embedded in some higher dimensional space.If there were an embedding, one might suppose that itcould be modeled with the four vector deformations only.

FIG. 1: Four deformations of space are shown. The scalardeformation 1̂ is in density. The vector deformations x̂ and ŷmove space-time in their respective directions. The bivectordeformation cxy rotates space-time in the x� y plane.

x̂1̂

ŷ cxy

With this caveat in mind, it may be useful to obtain anintuitive feel for the canonical basis elements by examin-ing Fig. (1), which shows the deformations of the x � yplane.
Addition of GA elements is as with any vector space.The basis notation helps as a reminder of how to mul-tiply, in that, for example, x̂ŷ = cxy. Multiplication isassociative, but not commutative, and the square of ba-sis vector element is, depending on the signature, either1 or �1. For the GA(PTT ) the signature is positive sothe squares of basis elements are all unity: x̂x̂ = 1̂. Theproduct of two distinct vector basis elements is anticom-mutative: x̂ŷ = �ŷx̂. This can be thought of as a reversalof the direction of rotation de�ned by the bivector. Theserules, along with the usual distribution of multiplicationover addition, are su�cient to de�ne multiplication ofarbitrary elements of a GA.
Note that in a GA with signature of x and y of (++) or(��), we will have cxy2 = �1. Elements that square to�1 can be thought of as geometric equivalents of imag-inary numbers. There are many examples where imag-inary numbers in standard physics equations have beenreplaced with GA elements, and the literature gives onea feeling that most of the small group of physicists us-ing GA eschew imaginary numbers having no geometricinterpretation. This paper will follow this trend. In thispaper, compacti�cation will provide a geometric meaningto the complexi�ed geometries.
For the reader unaccustomed to the GA or Cli�ord Al-gebras, a few calculational examples, with the signatureof (+ + ++) will assist in reading this paper, as well asprovide motivation for the symmetry calculations done
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later.

(x̂+ iŷ)2 = 0(nilpotent)(0:5 + 0:5x̂ )2 = (0:5 + x̂ )(idempotent)cxy 2 = �1 (rep. of C);ficyz;�icxz; icxyg (rep. ofSU(2))
An operation called \reversion" is sometimes useful. Re-version is indicated with a dagger and reverses the orderof multiplication: (AB)y = ByAy. Reversion has no ef-fect on scalars, vectors or psuedoscalars, but it has thee�ect of negating bivectors and trivectors. Note that ifa multivector can be factored into vectors, its productwith its reverse is a scalar, and one can therefore de�nean inverse for such elements. But as can be seen fromthe examples, not all elements of a GA possess a multi-plicative inverse.David Hestenes has applied the GA to the Dirac equa-tion, and has found that the equation and its wave so-lutions can be written in the GA with some insight intotheir geometric properties. His work is de�ned in a vari-ety of a GA called the \Space Time Algebra" (STA). TheSTA is obtained by using four unit vectors for the usualfour directions in special relativity, and assuming that thesquare of the basis vector is positive in the case of timeand negative in the cases of the three spatial dimensions.We can designate this GA as GA(STA), GA(+ � ��),GA(txyz), or CL1;3.Hestenes' analysis is based on the Dirac equation. Thef�g3�=0 matrices are reinterpreted as unit vectors in theSTA. The characteristic equation for the gamma matri-ces, �� +�� = g�� , is satis�ed when the signatureof the associated GA is chosen to match. Unfortunately,the Dirac equation describes a complicated mixture of acollection of very distinct fermions. Here \distinct" isused in the sense of distinguishable. For example, whenthe Dirac equation is used to describe an electron, thereare, in fact, from the point of view of the chiral ele-mentary particles, four very di�erent particles involved,right and left handed electrons, and right and left handedpositrons.This paper will take the position that the Dirac equa-tion is not a fundamental feature of the underlying �eldtheory, but is instead simply the result of a renormaliza-tion or resummation of the propagators of a set of fourdistinct fermions, as will be discussed in a later paper.Accordingly, this paper will analyze Hestenes' STA, butfrom the point of view of the chiral wave states, ratherthan the Dirac equation.

II. PRIMITIVE IDEMPOTENTS
Following Julian Schwinger's 1955 lectures on quantumkinematics, but specializing to the case of the electronfermion family, [3, Chap. 1.1] let A denote a set of char-acteristics that distinguish the 32 particles in a family Fof elementary fermions. We will de�ne the QCD colors

as f1; 2; 3g, and use the following designations for such afamily:
F = feL; eR; �eR; �eL; �L; �R; ��R; ��L;u1L; u1R; �u1R; �u1L; u2L; u2R; �u2R; �u2L;u3L; u3R; �u3R; �u3L; d1L; d1R; �d1R; �d1L;d2L; d2R; �d2R; �d2L; d3L; d3R; �d3R; �d3Lg

Let a1 be an elementary particle in F . Let M(a1) sym-bolize the selective measurement that accepts particlesof type a1, and rejects all others. One can imagine somesort of Stern-Gerlach apparatus, though since quarks arepermanently bound it will have to be an imaginary ap-paratus. We can de�ne addition of measurements to bethe less selective measurement that accepts particles ofany of the included types:
M(a1) +M(a2) =M(a1 + a2): (2)

Two successive measurements can be represented by mul-tiplication of the measurement symbols. Because of thephysical interpretations of the symbols, addition is as-sociative and commutative, while multiplication is atleast associative. One and zero represent the trivialmeasurements that accept all or no particles. Clearly,0 +M(a1) = M(a1), 1M(a1) = M(a1)1 = M(a1), and0M(a1) =M(a1)0 = 0, so the set of measurements forman algebra. The \elementary" measurements associatedwith these 32 fermions satisfy the following equations:
M(a1)M(a1) =M(a1); (3)

M(a1)M(a2) = 0; if a1 6= a2; (4)
32X
n=1M(an) = 1 (5)

Schwinger goes on to analyze incompatible measure-ments, such as spin in two di�erent directions, but thesesimple results are enough for our purposes.The repetition of the elementary particles in variousfamilies suggests that the higher families are simply ex-cited states of the electron family. Since the excitedstates of standard quantum mechanics are formed by dif-ferences in spatial waveforms, rather than changes to the�eld of which the wave is composed, we naturally assumethe contrapositive, and suppose that the di�erences be-tween the fermions of a single family are due only to nonspatial di�erences in their wave functions. With this nat-ural assumption, the 32 elementary fermions should beable to be distinguished by elements of the GA ratherthan by spatially distinct wave functions. That is, weshould be able to use the Cli�ord Algebra to describethe electron family, rather than require the use of thefull GA wave functions as de�ned on the manifold.The assumption that the elementary fermions of anyfamily can be described by the Cli�ord Algebra of the
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space-time manifold, without requiring an understandingof their wave functions, considerably simpli�es the task ofderiving their structure. The mathematicians having al-ready solved these problems, we shall de�ne the conceptsof the Measurement Algebra in their language. When anelement of an algebra is its own square, as in Eq. (3), themathematicians refer to it as an \idempotent". Whentwo idempotents of an algebra multiply out to zero as inEq. (4), they are called \perpendicular".The measurements here are assumed elementary in thesense that the elementary particles they describe can-not be broken (we assume) into subparticles. This cor-responds to the concept of an idempotent that cannotbe written as the sum of two perpendicular idempotents,which the mathematicians call a \primitive idempotent".Finally, it is easy to prove that (complete) sets of perpen-dicular primitive idempotents for Cli�ord Algebras addto unity as in Eq. (5). Therefore, our assumption aboutthe elementary fermion families requires that we examinethe mathematical literature for information about setsof perpendicular primitive idempotents of Cli�ord Alge-bras.A left (right) \ideal" I of an algebra CL is a subalgebrathat is closed under multiplication by elements of thealgebra on the left (right). That is, CL I = I. A minimalideals is one that has no nontrivial subideals. It is easy toshow that a primitive idempotent en generates a minimalleft ideal I = CLen.Ideals are particularly important in di�erential equa-tions because they can be used to derive symmetry rela-tions and reduce dimensionality of systems of di�erentialequations. For example, as shown in the appendix, forGA valued functions de�ned on the PTG manifold, theDirac equation can be derived from:

@t = r ; (6)
where  is a function on the space-time manifold thattakes its values from the associated GA. If fengNn=1 is acomplete set of perpendicular primitive idempotents (aswe are postulating to represent a family of elementaryparticles), then the above equation can be rewritten asN independent equations, each of the form:

@t( en) = r( en); (7)
Thus a complete set of primitive idempotents gives a wayof breaking a complex representation of the Dirac equa-tion into individual representations, one for each elemen-tary particle. This subject will be covered at length in alater paper[4].
Theorem (Lounesto [5]). A minimal left ideal of aCli�ord Algebra CLp;q is of the type I = CLp;qe, where

e = 12(1 + e1):::12(1 + ek) (8)
is a primitive idempotent of CLp;q and fengkn=1 are a set

of elements of CLp;q such that
enem = emen;en 2 Canonical basis;e2n = 1;fengkn=1 generates a group of order 2k; (9)

k = q � rq�p and ri are the Radon-Hurwitz numbers,de�ned by the recurrence formula ri+8 = ri + 4 andi 0 1 2 3 4 5 6 7ri 0 1 2 2 3 3 3 3 .
In this paper, we will refer to a set of elements thatsatisfy Eq. (9) as \generators of the Lounesto group",and we will refer to the generated group as the \Lounestogroup". As an example, the STA is equivalent to CL1;3and the above formula gives kSTA = 1. A choice for e1is the time vector, t̂, or a product of a space and thetime vector such as bzt. This gives a typical primitiveidempotent of 12 (1 + bzt), and a complete set of primitiveidempotents as f 12 (1 + bzt); 12 (1� bzt)g.Unfortunately, these sets of primitive idempotents eachinclude only two candidates, not nearly enough for the32 fermions in a family. On the other hand, it is at leastsomewhat heartening that the fermion family does havea power of two elements. Accordingly, we now considerways in which we could naturally increase the number ofcommuting elements in the canonical basis, and thereforethe number of primitive idempotents.Note that the above theorem was for a real Cli�ordAlgebra. If we complexify the algebra, we will obtainmore canonical basis elements that square to 1 so thetheorem does not apply. Also note that the product oftwo primitive idempotents is also a primitive idempotent.One can therefore pick k elements out of the Lounesetogroup, and as long as the chosen elements generate thewhole group, they can be used as an alternate set forthe purposes of de�ning the primitive idempotents. Wewill later use this fact to simplify the structure of thefermions.At this point, it is useful to introduce a modi�cationof the usual notation for complexi�ed Cli�ord Algebras.Instead of considering complex linear combinations of ele-ments of the canonical basis for the real Cli�ord Algebra,we will instead double the size of the canonical basis byincluding imaginary canonical basis elements. For exam-ple, in addition to x̂ as a basis element, we will include abasis element bix whose properties are those of ix̂. Withthis notation, î can be interpreted as a vector that com-mutes with all other basis elements (and therefore withall algebra elements), and that squares to �1.Manifolds with a compacti�ed (hidden) dimension,such as the PTG, can be complexi�ed naturally by com-plex Fourier series over the hidden dimension, as is shownin the appendix. The 1st, 2nd and 3rd order terms in theFourier series are interpreted as the electron, muon andtau families of fermions, and the 0th order term is inter-preted as the bosons. This unites the propagators for allthe particles into a single wave function.
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The PTG does not include time in the geometry. It istherefore natural to suppose that a wave state in the PTGmay require two GA �elds, one for the displacement fromneutral, the other for the rate of change or momentumof the displacement. For the purposes of this paper, thisdoubling of the �eld variables can be modeled with theaddition of another commuting basis vector. Unlike thecase with the STA, t has no role in the PTG, so we canuse t̂ to designate the momentum. This is an expansionof the basis elements similar to that of complexi�cation.For example, the basis element cxy de�nes a rotation inthe x � y plane, while the basis element dxyt de�nes thetime rate of change of the amount of rotation in the x�y plane. Addition is as usual with vector spaces. Formultiplication, the basis vectors î and t̂ commute witheverything else and square to �1.In order to accustom the reader to the notation, it isuseful to include a concrete example for eigenvector equa-tions in the complexi�ed STA. The complexi�ed STA, asopposed to the standard STA, has pairs of canonical ba-sis elements that square to one and also commute. Forexample, ft̂; cixyg are a set. This de�nes a complete setof 22 = 4 primitive idempotents:

f(1� t̂)(1� cixy)=4g (10)
A set of Lounesto generators can be interpreted asa set of commuting operators with the primitive idem-potents as eigenvectors. The eigenvalues are �1, whichis somewhat disconcerting to a physicist accustomed tohalf-integer eigenvalues, so we will instead consider theoperators to be halves of the commuting canonical ba-sis elements. Per the example calculations, this has thebene�cial e�ect of putting the operators into the stan-dard form for Lie algebras. The resulting eigenvectorequations for the �t = [0:5t̂ ] operator are as follows:
�t(1 + t̂)(1� cixy )=4 = +0:5(1 + t̂)(1� cixy )=4;
�t(1� t̂)(1� cixy )=4 = �0:5(1� t̂)(1� cixy )=4:(11)

The eigenvector equations for the 0:5cixy operator aresimilar, but with signs for the eigenvalue in the series+�+�.Following this example, we can connect the notion ofidempotents and ideals with the usual physics terminol-ogy of eigenvector and eigenvalues Accordingly, we canabbreviate the designations of the eigenvectors. Givena set of Lounesto generators given by fengkn=1, we willde�ne the operators and eigenvectors as follows:
�j = 0:5ej ; (12)

jn; :::l;m >= (0:5+ne1):::(0:5+ lek�1)(0:5+mek); (13)
where n; :::l;m are the eigenvalues, and take values of�1=2. The symmetry structure of the eigenvectors is thatof a k-cube. Since the eigenvalues are either positive ornegative 1=2, a natural notation for the eigenvectors, for

example for the 3-cube, is fj��� >; j��+ >; :::j+++ >g. The value of k for real GAs is given by the Lounestotheorem. For a complexi�ed GA of dimension n, thevalue of k is easily seen to be n=2 if n is even, and (n+1)=2 if n is odd, with primitive idempotents generatedby a set of k elements with the same requirements of theLounesto theorem, Eq. (9). For those manifolds that donot explicitly include time, an extra commuting operator(i.e. 0:5t̂ ) accounting for momentum versus positionmust be included and this increases the value of k byone.We can now compute the value of k, and thereforethe expected symmetry of a fermion family for variouschoices of the space-time manifold. Geometric canon-ical basis vectors with positive and negative signature,and notational canonical basis vectors, along with the kvalue are shown here:Manifold p(+) q(-) not. k SymmetrySTA t xyz 1 linexyz t 2 squarePTG xyzs it 3 cubexyzs it 3 cubexyzs t i 3 cubet xyzs i 3 cubeThe largest value of k is for the PTG and similar ge-ometries complexi�ed through compacti�cation, and theresulting symmetry is that of the cube, with 8 funda-mental fermions. The electron family includes four timestoo many, but there are only 8 electron family leptons,and the next section will show that these do have a cubicsymmetry.The question of whether or not the \internal" sym-metries of particles, other than spin, can be nontriviallyconnected to the \external" geometry of space-time hasalready been answered, in the negative, by various \no-go" theorems, most notably that of Coleman and Man-dula. [6] These theorems all assume SR, and thereforeperfect Poincar�e symmetry. This is a subtle argumentfor rejecting any candidate manifold for space-time thatmixes space and time. The PTG, in addition to assum-ing a preferred reference frame, explicitly rejects time aspart of the geometry. Thus the Poincar�e symmetry pos-sessed by the PTG is not perfect. On the other hand, theAppendix shows that the simplest wave equation in thePTG is equivalent to a multiple rep of the Dirac equa-tion, which is generally thought to be the standard forrelativistic waves. In a certain sense, the PTG is in thesame position as Quantum Field Theory. While the the-ory itself is not apparently Poincar�e invariant, the resultsof computations are.
III. THE FERMION CUBE

The fermions in a family can be designated by theirSU(2) and U(1) symmetry quantum numbers t3 (weakisospin) and t0 (weak hypercharge), or alternatively, by
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FIG. 2: Table of standard model fermion quantum numbers.

t3 t0 Q Q0p3=2
eR 0 -1 -1 1/2
eL -1/2 -1/2 -1 -1/2
�L 1/2 -1/2 0 1
�R 0 0 0 0
d�R 0 -1/3 -1/3 1/6
d�L -1/2 1/6 -1/3 -5/6
u�L 1/2 1/6 2/3 2/3
u�R 0 2/3 2/3 -1/3

FIG. 3: The fermion cube. The �R is not shown for clarity.
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their electric charge Q and \neutral charge" (or \weakcharge") Q0. [7, Table 6.2] The values for Q and Q0 arerelated to t3 and t0 by
Q = t3 + t0;Q0 = t3 cot(�w)� t0 tan(�w); (14)

where �w is the Weinberg angle. We will use sin2(�w) =1=4. A table of the usual quantum numbers for fermionsis shown in Fig. (2). Values for antiparticles are the neg-atives of the values shown. When the t0 and t3 numbersare plotted against each other, the result is clearly cubicas shown in Fig. 3The �gure of the elementary fermions makes clear thatwhile there is an obvious cubic structure to the leptons,the quarks are intermediate to pairs of leptons along fourparallel edges of the cube. For concreteness, we will de-�ne the cube according to the n, l, and m vectors asshown in Fig. (3). Both of the undetected neutrinos, �Rand ��L, end up at the origin, and we have to choosewhich goes with the visible \top" part of the cube andwhich is hidden. Since the rest of the top of the cube(i.e. f��R; �eL; �eRg) are all antiparticles, we will place the��L with them. The n vector therefore runs in the direc-tion from the ��L towards the eR, the l runs towards the�eR, and the m runs towards the ��R.Fig. (3) shows that the leptons do have a cubic struc-ture and can be interpreted as primitive idempotents.According to the illustrated choice of n, l, and m, and

using the order jn; l;m >, the assignments for the eightleptons are as follows:
��L � j � �� >; eR � j+�� >;��R � j � �+ >; eL � j+�+ >;�eR � j �+� >; �L � j++� >;�eL � j �++ >; �R � j+++ > (15)

The leptons are thus associated with the primitive idem-potents of a GA, but the presence of the quarks suggeststhat we can do better if we assume that the quarks andleptons are bound states of three subparticles each.Since the designation for the primitive idempotents hasthe feel of binary numbering to it, I will call these subpar-ticles \binons". The leptons correspond to bound statesof three identical binons, so each lepton has the naturalassociation with binons shown in Eq. (15). The quarksare mixed bound states of three binons, with mixturesonly possible among binons that share l and m quan-tum numbers. With this assumption, binons form boundstates among three particles that di�er at most by the nquantum number. If the three binons are identical (pre-sumably they di�er in spatial wave state, or are relatedby rotation of elements in the GA), the wave state is alepton, while the mixtures correspond to quarks. De�n-ing the bound states by jn1l1m1; n2l2m2; n3l3m3 >, thefermions are obtained as follows:
��L � j � ��;���;��� >d1R � j+��;���;��� >�u1L � j � ��;+��;+�� >eR � j+��;+��;+�� >�eR � j �+�;�+�;�+� >u1L � j++�;�+�;�+� >�d1R � j �+�;++�;++� >�L � j++�;++�;++� >��R � j � �+;��+;��+ >d1L � j+�+;��+;��+ >�u1R � j � �+;+�+;+�+ >eL � j+�+;+�+;+�+ >�eL � j �++;�++;�++ >u1R � j+++;�++;�++ >�d1L � j �++;+++;+++ >�R � j+++;+++;+++ > (16)

where the other quark colors are obtained by rotating theodd binon through the three positions.In the standard model, the charges of the quarks donot depend on color, so given the assignment of binonquantum numbers, it is possible to derive the relationsfor t3 and t0 in terms of n, l and m. Taking account ofFig. (2) and Eq. (3), we get a matrix equation for t3 and
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t0:0
BBBBBBBBB@

0 �1�1=2 �1=21=2 �1=20 00 �1=3�1=2 1=61=2 1=60 2=3

1
CCCCCCCCCA

=

0
BBBBBBBBB@

3=2 �3=2 �3=23=2 �3=2 3=23=2 3=2 �3=23=2 3=2 3=2�1=2 �3=2 �3=2�1=2 �3=2 3=2�1=2 3=2 �3=2�1=2 3=2 3=2

1
CCCCCCCCCA
M: (17)

Solving this equation, and taking account of Eq. (14), weobtain the solution:
tb3 = (l �m)=6;tb0 = (l +m� 2n)=6;Qb = (l � n)=3;

Q0bp3 = (l + n� 2m)=3: (18)
The subscript b is for binon, and signi�es that these quan-tum numbers are for the binons rather than the fermions.The symmetry operators, on the other hand, have values3x as large as these.Since n, l andm were chosen so that the vector n+l+mis perpendicular to the plane of the standard quantumnumbers, the above equations can be written as di�er-ences of quantum numbers. This is a particularly inter-esting way to write geometric basis elements, and there isconsequently an easy derivation of the SU(2) symmetryof the standard model, which we will demonstrate in (V).

IV. CHARGE, PARITY AND TIME
As can be seen from Eq. (18), this paper has, so far,been concerned with additive quantum numbers. Butthe Lounesto group generators commute, and since theireigenvalues are �1, they can also be associated with mul-tiplicative quantum numbers. This suggests that we canunite the notation for additive and multiplicative quan-tum numbers if we rede�ne the multiplicative quantumnumbers to �t the same relationship we have already de-rived for n, l, and m quantum numbers.Since the Lounesto group generators carry eigenvaluesof �1, their products do the same, so we can naturallyassociate each element of the Lounesto group with anoperator, and de�ne multiplication of the operators bythe multiplication of the Lounesto group. We will referto the operators (which carry eigenvalues of � 12 ) by � andthe Lounesto group elements by e, with the appropriatesu�ces. For example,

�nlm = enlm=2 = enelem=2 = 4�n�l�m: (19)
It is clear that not too much should be made of the n; l;mquantum numbers. Since all 7 nontrivial elements of theLounesto group correspond to operators that have valideigenvalues among the binons, rather than just en, el,and em, it is clear that our choise of the generators for

that set was somewhat arbitrary. For example, the setfenlm;�elm; enlg, would also have worked as the genera-tors of the Lounesto group, but would not have allowedthe computation of the charge operators as a linear sumof these generators.The fact that C, P , and T can be used as operatorswith quantum numbers in standard quantum mechanicssuggests that we can �nd geometric elements of the GAthat correspond to each, and that these elements willmultiply to unity. Note that it is more usual to have CPTmultiply to a phase factor, but that our fermion notation,with its explicit interpretation of î as a rotation operatorin the hidden dimension s, does not have explicit phasefactors. The phase factors will reappear when waves areconsidered in the full GA functions on the space-timemanifold; there they will represent relative rotations inthe s dimension. Here we are considering only Cli�ordAlgebra elements that represent particles and ignoringtheir (x; y; z; s) position, and therefore also ignoring theirphase.The motivation for looking at P , C, and T as Lounestogroup elements is the observation that C, P , and T com-mute and multiply to unity. This is exactly the groupmultiplication rule among a Lounesto group of order 4.Note that the de�nition of the CPT operators hereis slightly di�erent from that usually used in physics.Here we are de�ning, for example, the �P operator asan operator that has eigenvalues of � 12 according as theeigenfunction has an \intrinsic" parity of +1 or �1. Theusual de�nition of the parity operator P is to have that itchanges the parity of its operand. [8, Eq. (3.123)] Thusthe corresponding eigenvalue relations, for this paper ascompared to the standard use are:
�P j� > = (�=2)j� >; (this paper)P j� > = ��j� >; (standard)P j� > P = �j� >; (standard) (20)

where �� is a possible phase. The C and T operatorscorrespond to �C and �T in similar fashion. With thischange, C, P and T are brought into the same form as theLounesto operators. Since C, P , and T are to commutewith the Schwinger particle measurements, we must havethat C, P , and T correspond to operators in the Lounestogroup.Clearly spin in the z direction, Sz is also in theLounesto group. Since it is known how spin transformswith rotations of the coordinates for the manifold, thereis a natural choice for the spin operators:
�Sx = ciyz=2; �Sy = �cixz=2; �Sz = cixy=2; (21)

The fact that Sz must be in the Lounesto group places arestriction on the remaining elements in that they mustcommute with Sz. The possible choices must be in the(complexi�ed) subgroup generated by fcxy; bz; bs;btg. Butany element that has a cxy factor will be transformedby coordinate rotations of the real spatial dimensions,and this is incompatible with the de�nitions of C, P ,
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and T . Thus the possible choices for those elements ofthe Lounesto group that will correspond to P , C, and Tare reduced to f1̂; ŝ;dxyz;[xyzsg � f1̂; t̂g. Any two of theelements in fŝ;dxyz;[xyzsg anticommute, so the possiblechoices for C, P , and T include the following alternatives:

fŝ; bst; t̂g I
fdixyz;[ixyzt; t̂g II
f[xyzs;\xyzst; t̂g III: (22)

Each of these includes a natural choice, t̂, for T .The �rst selection is interesting in that there is no men-tion of z. Since we are representing a chiral particle mov-ing at nearly c [10] in the +z direction, perhaps Lorentzcontraction reduces deformations in that direction. Thedirection of travel in the s direction, bst can be used asC, that is, to distinguish between particles and antipar-ticles. Intrinsic parity is then de�ned as ŝ, in recognitionof the concept that x; y; z; s form a manifold and so, atleast locally, parity in (x; y; z) can be obtained by ro-tation in (x; y; z; s), leaving s negated. This alternativegives a particularly simple form for the coupling to pho-tons, and it will be the one used for the remainder of thispaper.Internal 3-d parity, in the form of dixyz is explicitlyincluded in the second choice, but this alternative wouldleave the internal binons without any explicit use of ŝ.In addition, this alternative includes imaginary numbers.While the fermions have a geometric interpretation of î,according to the Fourier series complexi�cation processthe bosons do not, and we would like C, P , and T toapply to bosons as well as fermions. The third choiceis the only one that includes a 4-d chiral element of thegeometry. Neither of the other two have such an elementeven in their full Lounesto groups including Sz.With the selection of the �rst alternative, the choicesfor C, P , and T give:
�Sz = eSz=2 = cixy=2;�C = eC=2 = bst=2;�P = eP =2 = ŝ=2;�T = eT =2 = t̂=2: (23)

The full Lounesto group is then f1̂; eSzg�f1̂; eC ; eP ; eT g.In order to assign speci�c geometric elements to thebinons, we must de�ne their quantum numbers with re-spect to eSz, eP , and eC . We can then use our geometricde�nitions, Eq. (23), to �nd en, el, and em, and thento de�ne �3, �0, Q, and Q0 using Eq. (18). In order todo this, we must decide on the multiplicative quantumnumbers for the elementary particles.Particles should carry a positive �C eigenvalue, an-tiparticles a negative. The intrinsic parity for antipar-ticles is known to be the negative of that of the particles,but are otherwise unknown. If we assign the same parityto the electron and neutrino �P and �C will carry identi-cal quantum numbers, so we choose the electron to have

FIG. 4: Table of binon/lepton multiplicative quantum num-bers.
nlm Sz C P T��L ��� � � + ���R ��+ + � + ��eR �+� + � � +�eL �++ � � � +

eR +�� + + + +
eL +�+ � + + +
�L ++� � + � �
�R +++ + + � �

positive parity and the neutrino to have negative. Thequantum number for �T is then determined by CPT = 1.The resulting quantum numbers are shown in Fig. (4).Solving for the Sz, C, P , and T in terms of en, el andem gives:
eSz = enlm; eP = �el;eC = en; eT = �enl: (24)

Solving for en, el and em gives:
en = eC = bst;el = �eP = �ŝ;em = �eSzeT : = �dixyt: (25)

Using Eq. (18), the additive quantum operators, aftermultiplying the right hand side by 3 to account for thecomposite nature of fermions and dividing by 2 to ac-count for the conversion from e to operator, are calcu-lated as:
�3 = �(ŝ� dixyt )=4;
�0 = �(ŝ+ dixyt+ 2ŝt )=4;�Q = �(ŝ+ bst )=4;

�Q0p3 = �(ŝ� bst� 2dixyt )=4: (26)
The role of the hidden dimension, s, in coupling to ex-change force bosons is clear. Also note that the couplingto the photon is particularly simple. Presumably thisfact is associated with the masslessness of the photon.

V. FERMION SYMMETRY
There exists in the literature at least one interesting at-tempt to place the standard model SU(3)�SU(2)�U(1)symmetry into a GA. [9] That attempt, however, has cer-tain disadvantages compared to this paper. First, it usesa complexi�ed version of the STA without any physi-cal justi�cation for complexi�cation. Second, it fails toidentify any particle states. Third, while it locates thesymmetry, it fails to show that the particular represena-tions, for example the singletons of SU(2), are naturallyfound in the STA. Fourth, it says nothing of why fermionscome in families. In short, it demonstrates the symmtery,
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not the individual particles. GAs are equivalent to ma-trix algebras, so that it is possible to �nd the standardmodel algebra, using matrix methods, in a GA is not toosurprising.Given the geometric version of the �3 generator of weakisospin SU(2), we can now derive a geometrical form forthe other two generators. First, we need the geometricform for total weak isospin. Examining Fig. (2), it is clearthat the total weak isospin operator must return 3=4 on��R, �eR, eL, and �L, and zero on the other binons. FromEq. (15), we see that elm returns 1 on binons with totalisospin of zero, and �1 on binons with total isospin of3=4. Therefore, the total weak isospin operator is givenby:

�2 = 0:375(1̂� elm) = 0:375(1̂� dixyt ): (27)
Note that (�3)2 = 0:125((1̂�dixyt), so we will look for �2and �1 to square to this same value. Also note that e� =0:5(1̂ � dixyt ) is a projector. This operator projects outthe doublet part of the subalgebra. The perpendicularprojector, 0:5(1̂ + dixyt ) projects out the singlet part ofthe subalgebra. The dimensions of these two subalgebrasare clearly identical, thus the doublet and dual singletform for weak isospin.To �nd �1 and �2, �rst note that these elements willhave to be in the ideal generated by �2. Inside that ideal,we will have a spin�1=2 irrep of SU(2). The Pauli spinmatrices therefore provide a clue in that �3 anticommuteswith the other spin matrices. Consequently, we list thecanonical basis elements that anticommute with �3, andlook for a linear combination that squares to (�3)2. Asolution is:

�1 = (x̂�diyst )=4;
�2 = �(cixs+ byt )=4;
�3 = �(ŝ� dixyt )=4: (28)

There are various other solutions, for example, one canmultiply both �1 and �2 by t̂ to get a form where ŷ insteadof x̂ appears alone, but there are no solutions that treatx and y on equal footing. This suggests that any isospinmixed state particles cannot be rotationally symmetricabout their spin axis. The third choice for the CPToperators in Eq. (22) gives forms for �1 and �2 that arerotationally symmetric.
VI. BINON BOUND STATES

Without knowing the spatial waveforms for how binonsare bound together to produce fermions, it is not possibleto explicitly derive the SU(3) symmetry. But under theassumption that the interaction can be modeled as a pair-wise potential, the presence of an SU(3) symmetry canbe argued from the discrete symmetries that apply. Letr23, r31 and r12 represent the distances between the threebinons. Due to Lorentz contraction, one expects that the

three binons will be in the same plane perpendicular tothe direction of propagation. Rigid rotations of the threeparticles in that plane correspond to a U(1) symmetry.Perhaps this has something to do with weak hypercharge.In addition to distances between the binons, one mustalso specify their relative positions in the hidden dimen-sion s. Since s is a cyclic dimension, a natural way ofdescribing the relative positions of the binons is by usingtheir separation in 3-space as the magnitude of a complexnumber and their angular separation Sij in s as the phaseof the complex number. The three complex numbers canbe used as a set of canonical coordinates for the binonsystem. The canonical coordinates are a vector of threecomplex values, which is a suitable object for applicationof SU(3) symmetries with a triplet representation:0
@ z1z2z3

1
A =

0
@ r23 eis23r31 eis31r12 eis12

1
A : (29)

Under the assumption that the binding potential satis�esan SU(3) symmetry in the above canonical coordinates,we have derived that the binding potential can dependonly on the squares of the magnitudes of the three com-plex numbers, and therefore on the distances between thebinons (and not on their relative phases):
Vb(r12; :::s23) = Vb((r23)2 + (r31)2 + (r12)2): (30)

The assumption that the binding potential can be writtenas a sum of pairwise potentials implies that the form ofthose potentials is that of a linear harmonic oscillator:
Vb(r12; :::s23) = ((r23)2 + (r31)2 + (r12)2)V0; (31)

where V0 is a suitable constant. Thus the binding forcebetween binons is linear, as is suspected of the gluonforce between quarks, and binons are permanently boundinto fermions. With all three binons identical, the boundstate is evidently a singlet, but with one binon distinct,the degeneracy is broken to show the SU(3) symmetryas a triplet of colored particles.The binons that make up a lepton are identical in thesense that they all belong to the same ideal, but they neednot be identical with respect to their degrees of freedomwithin that ideal, nor in their spatial (i.e. x, y, and z)dependency. Since we have ideals with a geometric in-terpretation, we can study what the degrees of freedomwithin those ideals are. This will give an interesting ex-planation for why certain pairs of binons can mix to formthe quarks. Accordingly, we multiply out the ideals anddisplay them paired according to their ability to mix toform quarks. This is shown in Fig. (5), and it is clear thatthe mixing rule has to do with the notational degrees offreedom, î and t̂. When one notes that the degrees offreedom that are not frozen out by the ideals is the sub-algebra generated by fx̂; ŷ; ẑg, it becomes clear that thebinons that mix are able to have identical geometric (asopposed to notational) degrees of freedom. In addition,
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FIG. 5: Table of binon ideals. Quarks are mixtures formedfrom each pair.

nlm 1̂ ŝ t̂ bst cixy dixys dixyt [ixyst��L ��� + + � � � � + +
eR +�� + + + + + + + +��R ��+ + + � � + + � �
eL +�+ + + + + � � � ��eR �+� + � + � + � + �
�L ++� + � � + � + + ��eL �++ + � + � � + � +
�R +++ + � � + + � � +

the degrees of freedom that correspond to the notationalproduct bit may also be identical.The form of the binon potential, Eq. (31) suggests thatit is possible to model the binding force as an integral ofGA values over the manifold. The absence of mixingoutside of the 1̂ and bit compatible pairs of binons impliesthat such mixtures would be too high in energy to beobserved. This suggests that the î and t̂ parts of the ge-ometry have less energy associated with them, as they areof no concern in determining which binons can combineto produce low lying bound states.
APPENDIX: FOURIER SERIES AND DIRACEQUATION
While the Dirac equation will be discussed at lengthin a separate paper, [4] this is a good place to derivesolutions to the Dirac equation within the binon idealsshown in Fig. (5). The simplicity of the derivation of theDirac equation, speaks well for applicability of the GA. Inaddition, the presence of the Dirac equation shows thatthe PTG, despite having no exact Poincar�e symmetry,nevertheless supports a fully relativistic wave equation,and the simplicity of the Fourier series expansion suggeststhat the fermion families are best modeled this way.The simplest linear di�erential equation in the PTGmanifold, using the GA de�nition of the derivative, is@t	 = r	. Written out explicitly into coordinates theequation is:
@t	(x; y; z; s; t) = (x̂@x + ŷ@y + ẑ@z + ŝ@s)	: (A.1)

At this point, in order to make contact with the rest ofthis paper, we will introduce the same notational vec-tor t̂ that was used to distinguish position and momen-tum coordinates and replace the above equation with theslightly less simple one:
t̂@t	(x; y; z; s; t) = (x̂@x + ŷ@y + ẑ@z + ŝ@s)	: (A.2)

In this version, the rate of change of the position coor-dinates depends on the spatial derivatives of the coordi-nate positions and vice-versa. If we had failed to makethis substitution, we would end up with half the num-ber of copies of the Dirac equation that we expect for

each family. To see the e�ect of using Eq. (A.1) insteadof Eq. (A.2), one can replace t̂ with 1 in the followingequations.Take a Fourier series to eliminate the s dependence,and thereby convert the 	 a function de�ned on the PTGmanifold to a set of functions de�ned on (x; y; z; t), gives(for the nth fermion family):
 n(x; y; z; t) = Z 2�Rs

0 eins=Rs	(x; y; z; s; t) ds; (A.3)
where Rs is the radius of the hidden dimension s, andmn = n=Rs will be an e�ective mass. Using Eq. (A.2) toderive a di�erential equation for  n (and multiplying onthe left by bst ) gives:
bst@t n = �(cxs@x + bys@y + bzs@z +mnî ) n; (A.4)

This is in the same form as the Dirac equation withthe equivalences of 0 = ŝt, j = dxjs. Note that the4�vector of GA constants (bst;cxs; bys; bzs ) satis�es thesame anticommutation relations as the Dirac equationgamma matrices. This shows that Eq. (A.4) is closelyrelated to the Dirac equation. But since  n takes its val-ues from the �eld of GA elements, which has far moredegrees of freedom than the Dirac equation's 4�vectorof complex numbers, it should be clear that Eq. (A.4) isa multiple representation of the Dirac equation.The �eld of GA elements in the PTG has 26 = 64 realdegrees of freedom, which is enough for eight copies of theDirac equation. We can explicitly write these eight Diracequations in geometric form by multiplying Eq. (A.4) onthe right by the eight ideals Inlm shown in Fig. (5):
bst@t nInlm = �(cxs@x + bys@y + bzs@z +mnî ) nInlm:(A.5)The result is eight copies of the Dirac equation, one foreach particle.It is also instructive to derive the general plane wavesolutions to Eq. (A.4). We assume that  n is in the form n = exp(̂i(kx�!t)) 0 where k is a 3�dimensional wavevector, x is a 3�dimensional position, ! is a frequency,and  0 is a GA constant. Specializing, as before, forparticles propagating in the +z direction so that kx =kzz, and multiplying by î one obtains:

(!ŝ� kz bzs�mn) 0 = 0: (A.6)
A solution to the above is  0 = !ŝ� kz bzs+mn, subjectto the condition that

!2 � k2 = m2n: (A.7)
For mn very small, the above equation shows that jkj isslightly less than !, and therefore that the particles aremoving at nearly the speed of light, as would be expectedof chiral fermions. The  0 solution is nonzero when mul-tiplied by any of the binon ideals listed in Fig. (5), so a
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solution to the Dirac equation that is in the ideal for thejnlm > binon can be calculated as:

 nlm(x; t) = ei(kx)�!t 0Inlm: (A.8)
A general planar solution to the Dirac equation within

the Inlm ideal can be written as:
 nlm(x; t) = ei(kx)�!t 0 � Inlm (A.9)

where � is any nonzero element of the subalgebra gener-ated by fx̂; ŷ; ẑg.
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