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A common complaint about the standard model is that it
has too many parameters.

Show: page 2 of astro-ph/0511774
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Today I will be discussing the lepton masses. They depend
on a Higgs vev and 6 Yukawa coupling constants, a total of
7 arbitrary parameters.

Show: page 3 of astro-ph/0511774

3



This is a plot of the weak hypercharge and weak isospin
numbers of the elementary fermions of the first generation.
Kind of looks like a cube.

The quarks show up in the columns, and they are in be-
tween two leptons so it’s natural ...

Show: page 6 of brannenworks.com a_fer.pdf
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... to suppose that the quarks and leptons are composite,
with the leptons bound states of three similar preons each,
and the quarks bound states of three distinct preons each.

This sort of preon model is a bit ugly when it comes to as-
signing spin to the preons and stuff like that. Maybe they’re
spin one sixth.

Show page 7 of brannenworks.com PHENO2005.pdf
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Since the three preons making up a lepton are all simi-
lar, a natural operator type to use for cross generation is the
circulant. If we want our operator Gamma to have real eigen-
values, then we can write it this way. Here, mu is an overall
scale. If this were a table of coupling constants, eta would be
an amplitude. Delta is a phase that shows up when you take
two different paths to get somewhere.

The eigenvectors of a circulant matrix are here, where omega
is the complex cubed root of one. The resulting eigenvalues
are here.

The trace gives the sum of the eigenvalues, and we can
square the matrix and take the new trace to get the sum of
the squares of the eigenvalues.
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A 3x3 circulant operator in complex num-
bers:

Γ(µ, η, δ) = µ


1 ηe+iδ e−iδ

e−iδ 1 ηe+iδ

ηe+iδ e−iδ 1

 .

The eigenvectors:

|n〉 =


1

e+2inπ/3

e−2inπ/3

 n = 1, 2, 3

The eigenvalues:

λn = µ(1 + 2η cos(δ + 2nπ/3))
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The result is that we can cancel out mu and eliminate delta
and get this relationship between the eigenvalues and eta:

Our eigenvalue formula had a cosine in it, so it could pro-
duce negative values. Now mass is always positive, so lets
put the square roots of the masses of the charged leptons
into our formula and see what value we get for eta squared.
And then we can get mu and delta as well. I’m putting a one
as a subscript because these are for the charged leptons, I’ll
use zero for the neutrinos.

As you can see, these numbers don’t look at all random.
The first, was found by Yoshio Koide in 1982. I found the
2/9 this past summer.
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η2 =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
= η2.

3

2

me + mµ + mτ

(
√

me +
√

mµ +
√

mτ )2
− 1

2
= η2

1 = 0.5000018

δ1 = 0.2222220
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The way Koide found his relationship is in this form:
There are three unknown neutrino masses but we have two

pieces of oscillation data. It’s natural to use the Koide rela-
tion to predict the neutrino masses and several papers are out
there having tried to do this. But they were using Koide’s
equation, not my eigenvector form, and it turns out that the
oscillation data excludes this.

If you use the eigenvalue version of the mass relationship,
it is natural to suppose that one of the square roots of mass
is negative. Then you can fit the masses. A set of values that
meet recent oscillator data, and gets the Koide relationship
with one negative square root is here:

Translating back into the eigenvalue language, the neutrino
mass values were chosen to get eta squared to be one half.
It’s really not very surprising that adding that extra freedom
allowed the equation to be satisfied.
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(
√

me +
√

mµ +
√

mτ )2

me + mµ + mτ
=

3

2
.

m1 = 0.0004 eV,

m2 = 0.009 eV,

m3 = 0.05 eV.

(−√m1 +
√

m2 +
√

m3)
2

m1 + m2 + m3
=

3

2
.
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We can take those predicted neutrino masses and use them
to calculate mu and delta for the neutrino sector. The result
is fairly close to:

Now these factors of three might have something to do with
those braids that Lee Smolin was talking about yesterday.
Maybe the electron sector has twelve braid stages while the
neutrino sector has one, and this might have something to do
with this angle of pi over twelve. Who knows. No one had
an explanation for the Koide mass relation and no one has
an explanation for this one.

We can suppose that these formulas are exact, and that eta
squared is one half. Then we can compute the tau mass from
the electron and muon, which is just the Koide prediction:

Using the tau prediction, we can go back and compute a
tighter bound on the value of delta one and we get this in-
teresting dimensionless number:

And finally, we can postulate these relationships and pre-
dict the neutrino masses to rather high precision:
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δ0 = δ1 + π/12,

µ1/µ0 = 311.

mτ = 1776.968921(158) MeV

= 1.907654627(46) AMU.

δ1 = .22222204715(311) from MeV data
= .22222204717(48) from AMU data.

m1 = 0.000383462480(38) eV

= 0.4116639106(115)× 10−12 AMU

m2 = 0.00891348724(79) eV

= 9.569022271(246)× 10−12 AMU

m3 = 0.0507118044(45) eV

= 54.44136198(131)× 10−12 AMU
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If we multiply the tribimaximal mixing angle matrix by a
matrix composed of the eigenvectors of the circulant matrix,
the result is this guy, which is a 24th root of unity.

This has been an abbreviated description of the structure
of the leptons. A complete description requires a quantum
formalism that gives you matrices of Pauli algebra spin pro-
jection operators. But that sort of thing is equivalent to
matrices of complex numbers, under certain assumptions.

I’m just starting work on the quarks. I think I can break
the mesons down.
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1√
3


1 e+2iπ/3 e−2iπ/3

1 1 1

1 e−2iπ/3 e+2iπ/3




√
2/3

√
1/3 0

−
√

1/6
√

1/3 −
√

1/2

−
√

1/6
√

1/3
√

1/2



=


√

1/2 0 −i
√

1/2

0 1 0√
1/2 0 i

√
1/2

 =


1 0 0

0 1 0

0 0 1


1/24
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Now some theory.
We will begin with pure density matrices for spin one half.

These are spin projection operators. I will use capital letters
where the letter designates the spin direction.

Let’s think about products of these operators that begin
and end with the same operator, say Z. No matter what stuff
I put in between the result has to be be a complex multiple
of Z (maybe zero).

Complex multiples of Z commute with complex multiples
of Z, so these types of products form a copy of the complex
numbers.
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R2 = R.

ZRGBGBRZ = η Z.

where η is a complex number.
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Let me define bras and kets this way:
Now I just showed that stuff that begins and ends with Z

all commute, so this is just like the bras and kets of the usual
way of doing quantum mechanics.

By using density matrices, we eliminated the global U(1)
gauge freedom normally present in spin one half wave func-
tions. But we can go back to the bra and ket form of quantum
mechanics any time we want by choosing a specific direction
and making that our "Z".

Another way of explaining this is that we have geometrized
the global U(1) gauge symmetry. It is no longer a mystery.
We know exactly what it is. It’s a preferred direction in space
that you choose in order to convert a density matrix to bra
ket form.

Now the standard model is built on global gauge symme-
tries that are a heck of a lot more complicated than the U(1)
symmetry. How can we use this trick to geometrize these
gauges too?
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|R〉 = RZ,

〈G| = ZG

〈G|R〉 = ZGRZ,
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In the 1950s, Schwinger developed a very elegant version
of Quantum mechanics called the "Measurement algebra".
In it, he uses the idea of a generalized Stern-Gerlach filter.
This is like a piece of equipment that allows certain parti-
cle types and or orientations to pass and absorbs all others.
Zero means a beam stop. One means an unimpeded beam.
Multiplication means feeding the output of one filter into the
input of another. Addition means allowing particles to pass
through either of two filters.

Now measuring a particle twice is the same as measuring
it once, so the measurements of fundamental particles, for
example an electron with spin up, square just like density
matrices.

The only difference with density matrices is that we can
make filters that, for example, pass electrons and reject neu-
trinos, well at least theoreticians can.
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Now to geometrize the Schwinger measurement algebra, we
have to choose a geometric algebra. Since the usual density
matrices for spin one half particles uses the Pauli algebra, it’s
natural to generalize this to a more complicated Geometric
algebra. The Dirac algebra is an obvious choice.

If we assume some hidden dimensions, then the associ-
ated Clifford algebra becomes bigger and the geometry of
the fermions (or the geometry of their preons) becomes more
complicated. Back in 2004 I realized that this gave a geo-
metric way to count the number of hidden dimensions. That
paper was also rejected by arXiv after a physicist asked me
to publish it.

The cube I showed in the first part of this lecture comes
from these assumptions. The technical reason for choosing a
cube is that this is the form of the spectral decomposition of
a Clifford algebra. Scary stuff.
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Xe Xe = Xe
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