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In the standard model, the lepton masses appear as arbitrary constants determined by experiment.
But in 1982, Yoshio Koide proposed a formula for the charged lepton masses that is still going
strong a quarter century later. The success of Koide’s formula remains unexplained, but its perfect
accuracy, and its simplicity in explaining the charged lepton mass hierarchy, suggest that it may
be the basis for a new theory of mass, a theory simpler than that of the standard model. In this
paper, we extend the Koide mass formula to an eigenvector equation, find further coincidences,
apply the formula to the neutrinos, and speculatively suggest a complete solution to the problem of
the hierarchy of lepton masses and the MNS mixing matrix.

PACS numbers: 14.60.Pq

This paper is an attempt to find and explain coinci-
dences in the masses and mixing angles of the leptons. It
is an extension of the Koide [1, 2] formula.

The paper is divided into four sections. In the first sec-
tion we rewrite the Koide formula, which predicts the tau
mass, as an eigenvector equation. In this form, Koide’s
single coincidence becomes a double coincidence, which
adds to the importance and mystery of the formula.

Neutrino oscillation measurements have provided two
restrictions on the masses of the three neutrinos. Koide’s
formula provides a third, but in its original form it is in-
compatible with the oscillation data. Putting the formula
into eigenvector form allows it to be applied, and in the
second section we derive bounds on the neutrino masses
according to this restriction. Our predictions follow the
usual fermion hierarchy.

The first two sections addressed the individual hierar-
chies of the charged and neutral leptons. In order to
address the vast difference between the masses of the
charged and neutral leptons, we must first define a model
for mass. In the third section, we introduce a toy model
based on 3 x 3 circulant matrices of complex numbers.

The fourth section expands the toy model of the pre-
vious section to non commutative algebra.

Defining the “mass operator” as an operator that re-
lates the left and right handed states through a mass in-
teraction, the fifth section proposes a model for the mass
hierarchy where the neutrino masses are suppressed by
a phase that appears in the mass operator of the neu-
trino preons. We show that the mixing angle data and
the differences in the parameters of the two sectors are
consistent with this assumption.

In the sixth section, we use the mass model of the
previous section to predict neutrino mass values, as well
as the squared mass differences for the oscillation data,
to high precision.
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I. CHARGED LEPTONS

A circulant matrix is one of the form:

ABC
C ABJ|. (1)
BC A

(A, B,C) =

where A, B and C' are complex constants. Other authors
have explored these sorts of matrices in the context of
neutrino masses and mixing angles including [3-5]. Such
matrices have eigenvectors of the form:

1
n)y=1 at™ |, n=1,23. (2)
a—n
In the above, o = €%7/3. This set of eigenvectors are

common to more than circulant matrices. Some refer-
ences using these sets of eigenvectors in the problem of
neutrino mixing include [6-10].

If we require that the eigenvalues be real, we obtain
that A must be real, and that B and C are complex
conjugates. This reduces the 6 real degrees of freedom
present in the 3 complex constants A, B and C' to just 3
real degrees of freedom, the same as the number of eigen-
values for the operators. In order to parameterize these
sorts of operators, in a manner only slightly different from
that chosen in [4], let us write:

1 nexp(+id) nexp(—id)
L(p,m,0) = p | nexp(—id) 1 nexp(+id) |,
nexp(+id) nexp(—id) 1
(3)

where we can assume 7 to be non negative. While n and
0 are pure numbers, u scales with the eigenvalues. Then
the three eigenvalues are given by:

L(psm,0) In) = A [n),

(1 + 2ncos(d + 2nm/3)) |n). (4)

The sum of the eigenvalues are given by the trace of I':

A+ A+ A3 = 3,“4, (5)



and this allows us to calculate p from a set of eigenvalues.
The sum of the squares of the eigenvalues are given by
the trace of I'%:

AT+ A3+ A3 =32 (1 + 29%), (6)
and this gives a formula for n? in terms of the eigenvalues:

M4+X+X3)? 3 1)
M43+ X3

12

The value of § is then easy to calculate from Eq. (4).
Putting n*> = 1/2 in Eq. (7) gives:

M+ +A3)2 3
NAA A2 ®)
1 2 3
and this is identical in form to the formula that Yoshio
Koide[1, 2] proposed in 1982 for the masses of the charged
leptons:

(Ve + /ity + y/mz) 3

Me + my, +m; 2’

(9)

provided that one associates A, with the square roots of
the masses of the charged leptons.

Since the masses of the electron and muon are known
to much greater accuracy than the mass of the tau, the
Koide relation provides a prediction for the tau mass.
Using the latest PDGJ11] data in Mev and AMU for the
electron and muon masses:

me = 0.510998918(44) MeV

= 548.57990945(24) AMU (10)

m, = 105.6583692(94) MeV (11)
= 0.1134289264(30) AMU
the Koide relation gives an estimate for the tau mass:

m, = 1776.968921(158)
1.907654627(46)

MeV

AMU, (12)

that, remarkably for a prediction of a quarter century
ago, is centered in the error bars for the measured tau
mass, which the PDG includes only in MeV:

m, = 1776.99(+29 — 26) MeV. (13)

The error bars in the prediction Eq. (12), and in later
calculations in this paper, come from assuming that the
electron and muon masses are anywhere inside the error
bars given by the PDG data.

If we use the PDG (MeV) data for the electron, muon
and tau to find the operator that gives the square roots
of the charged lepton masses, we find that u, 2, and §
are:

p = 17716.13(109) eV 2,
n? = 0.500003(23), (14)
5 = 0.2222220(19),

where the subscript 1 has been added to distinguish these
numbers from the figures for the neutral leptons which we
will be discussing in following sections. In addition to the
Koide relation which gives 7 = 0.5, a new coincidence is
that 07 is close to 2/9, a fact that went unnoticed until
this author discovered it in 2005.[12]

If one supposes that n? = 1/2 and §; = 2/9, then
one can compute the value of p; individually with the
electron, muon and tau. But the values one gets from
the electron and muon masses are slightly incompatible.
Using the MeV data, the three values one obtains (in
units of square root MeV) are:

w1 = 17.71620000(140000) tau
17.71598503(79) muon (15)
17.71607210(76) electron.

The discrepancy is sharper in the AMU data:

g1 = 0.58046396470(770)
= 0.58046681720(13)

muon
electron, (16)
with units of square root AMU.

The near compatibility of the charged lepton masses
with respect to n> = 1/2 and 6, = 2/9 is difficult to
explain. The values seem too close to be accidental. Per-
haps these are the first order values and there are second
order corrections that modify u1, n?, and or d;.

If we assume that the Koide relation is perfect, we can
use the PDG data to compute the possible values for 1
and d1. The electron and muon data are by far the most
accurate, so for a given set of electron and muon masses,
we compute the tau mass from the Koide relation, and
then compute p; and ;. Letting the electron and muon
masses range over the PDG values in AMU and MeV,
the resulting ;1 and §; values are:

p = 17715.99225(79)  eV%?,

= 0.5804642012(71) AMU®?, (17)
5 = 0.22222204715(312) (from MeV), 18)
= 0.22222204717(48)  (from AMU),

so the data are compatible with only d; requiring a second
order correction.

On the other hand, if we assume that §; = 2/9, we can
compute the tau mass from the electron and muon data
and then find the values of y; and 77 compatible with
them. The results are:

p = 17715.98230(84) V%3, (19)
= 0.5804638752(79) AMU",

n = 0.49999978688(380) (from MeV), (20)
= 0.49999978689(58)  (from AMU).

and the data are compatible with only n? requiring a
second order correction.



Note that §; is close to a rational number, while the
other terms that are added to it inside the cosine of
Eq. (4) are rational multiples of pi. This distinction fol-
lows our parameterization of the eigenvalues in that the
rational fraction part comes from the operator I', while
the 2n7/3 term comes from the eigenvectors. Rather
than depending on the details of the operator, the 2nm/3
depends only on the fact that the operator has the sym-
metry of a circulant matrix.

II. NEUTRINOS

We will use my, ms, and m3 to designate the masses
of the neutrinos. The experimental situation with the
neutrinos is primitive at the moment. The only accurate
measurements are from oscillation experiments, and are
for the absolute values of the differences between squares
of neutrino masses. Recent 20 data from [13] are:

|m3 —m?| = 7.92(1 +.09) x 10~° eV?

ImZ —m3| = 2.4(1+0.21 —0.26) x 1073 eV? 1)

Up to this time, attempts to apply the Koide mass
formula to the neutrinos have failed,[14-16] but these at-
tempts have assumed that the square roots of the neu-
trino masses must all be positive.! Without loss of gen-
erality, we will assume that pg and 79 are both positive,
thus there can be at most one square root mass that is
negative, and it can be only the lowest or central mass.

Of these two cases, the one having the central mass
with a negative square root is incompatible with the os-
cillation data. Having the lightest neutrino have a nega-
tive square root is compatible with the oscillation data.
Applying the constraint that n3 = 1/2 to the oscillation
error bars gives the following restrictions on the neutrino
masses:

my = 0.000388(46) eV,
my = 0.00895(17) eV, (22)
0.0507(30)  eV.

g
|

These masses can satisfy the squared mass differences of
Eq. (21) as well as the Koide relation as follows:

(—vmi+ Vyme + vmg)® 3 (23)

my + mo + m3 2

The same computation gives values for the parameters of
the circulant matrix for the neutrino square root masses.
Using 0 as a subscript to distinguish the neutrinos from
the charged leptons, we have:

po = 0.1000(26) eV®?,

5o = 0.486(21). (24)

1 This restriction is difficult to understand given several papers
that have assumed that the neutrino masses themselves may be
negative.[17, 18]

It is not a surprise that adding the freedom of negative
square roots to the Koide relation allows the oscillation
data to be fitted to the neutrinos. We can only hope that
these numbers will prove as prescient as Koide’s.

III. A COMMUTATIVE TOY MODEL

The circulant matrix paramaters p and § of the
charged and neutral leptons appear to have little to do
with one another, but there is a speculative way of in-
terpreting them that may give insight into the origin of
mass. In this section, we begin with a toy model for
mass. In the following section we will expand this to a
non commutative model.

Let us consider why it is that the Koide relationship
gives a simple form for the square root mass operator
instead of for the mass operator. Considering mass as
a coupling between left and right handed states |L) and
|R), we write:

m? = (R|MI|L)(L|M|R)
tr (|R)(R[M|L)(L|M),

(25)

where M is an operator that gives mass as a coupling
constant between left and right handed states. Suppose
that we can split the M operator into bra and ket form:

M =|M) (M]|. (26)
Then the Koide relation becomes natural if we have that

(M|R) = (M|L) = /m. (27)

Writing the M matrix in this form suggests that we
should consider the mass operator not as an operator,
but instead as an intermediate state between the left and
right handed states. We can analyze the problem as one
of interactions between pure density matrices.

Pure density matrices satisfy an idempotency relation-
ship:

p*=p. (28)

Let us find the 3 x 3 complex circulant matrices that are
also idempotent:

2

ABC ABC
CAB| =(c ABJ. (29)
B C A BC A

The above gives three complex equations in three un-
knowns that can each be arranged to be in idempotent
form, p?> = p where p is a linear combination of A, B,
and C. The solutions are each 0 or 1 independently, and
we have:

A+B+O = ai,
(B+C)/2+iV3(B—C)/2 = ay, (30)
B

A—
A—(B+C)/2—iV/3(B-C)/2 = a3,



where a,, is either 0 or 1. We can conveniently denote the
eight resulting idempotent circulant matrices by pa,azas-
Of these eight idempotent circulant matrices, pggg is
just the zero matrix while p11; is the unit matrix. The
matrices with two 1s, po11, p101, and pi110 can be writ-
ten as sums of pgo1, Po10, and pigg, so it is only these
last three that are “primitive idempotents” and there-
fore that correspond to elementary particles.? It is these
three matrices that we will associate with the three gen-
erations. They can be factored into bra ket form (subject
to multiplication by an arbitrary phase). For example:

111 1
1 1 1
111 V3 1 V3

(31)
The full set of factored circulant primitive idempotent
3 x 3 matrices are:

(100 = (11 1),
010 = (1 o ), (32)
001 = (1 o* «),

where o = €2i"/3. With this basis, the bra form for the
mass operator is:

(M| = p(1,met? ne=%). (33)

The resulting mass operator |M)(M]| is not of a simple
form, but it does separate the rational contributions to
the cosine (i.e. ) from the irrational parts (i.e. 2nw/3).
To simplify the formula for mass we have to consider
matrices of non commuting numbers.

IV. A NON COMMUTATIVE MODEL

In this section we will be working with the simplest non
commutative algebra, the Pauli algebra. Let 7, g, and b
be three 3—dimensional vectors that define an equilateral
spherical triangle. That is, the angles between them are
all equal:

Fog=g-b=b-7=-cos(,), (34)

where 0, is the angle between the vectors. We will use
these three vectors to define a subalgebra of the usual
Pauli algebra.

The projection operators for spin in the directions of
these three vectors are defined as:

R = (1+7 8)/2,
G=(1+7 )2 (35)
B = (1+b-5)/2,

2 This interpretation follows Julian Schwinger. See [19] for the
definition of “elementary measurements” or consider the case of
the 2 X 2 circulant idempotent matrices which happen to be pure
density matrices in the Pauli algebra.

where & is the usual vector of basis vectors of the Pauli
algebra. For example, the projection operator for spin in
the +z direction is (1 + 0,)/2.

Let us consider the subgroup of the Pauli algebra de-
fined by complex multiples of arbitrary products of these
three projection operators. A typical element of the al-
gebra might look like:

BRGGBRRRB, (36)

where [ is a complex number. In any such product,
we can collapse squares of projection operators. So the
above is equal to:

BR(GG)B(RRR)B = BRGBRB. (37)

Next, any product of the form UVU where U and V are
two different projection operators, can be reduced to a
real multiple of U. In the above example:

1 3
BRB = “LC%(M B, (38)
so we can reduce our example accordingly:
1 0
SRG(BRB) = 5“%(4) RGB.  (39)

Finally, products of the form UVW where U, V and
W are distinct projection operators, can be reduced to
complex multiples of the product UW. For the example
of our equilateral projection operators, the rule? is:

1+ cos(6,)

RGB = et® RB, (40)

where ¢ is half the (oriented) area of the spherical triangle
defined by the vectors 7, ¢, and b. These rules allow any
product of R, GG, and B to be reduced to a complex
multiple of the first and last operators. In addition, the
complex multiple will be of the form:

. i/2
(LY oy

where j is the number of terms reduced from the product
other than by the square rule, and k counts the number of
times one loops around the RG B sequence in the positive
direction.

With these rules, we can now upgrade our bras and
kets to non commutative form:

a aR

b — bG |,

c cB (42)
(a* b* c*) — (a*R G c*B),

3 The reader unfamiliar with this relation is invited to verify it. For
example, (140,)(140y)(1+02)/8 = \/1/2eT7/4(1+0,)(1404),
and the spherical area of the first quadrant is /2.



where a, b, and ¢ are arbitrary complex numbers. When
converting a vector to density matrix form we now end
up with a matrix of products of projection operators:

aR a*aR b*aRG c*aRB

bG (a*R b*G C*B): a*bGR b*bG c*bGB

cB a*cBR b*cBG c*cB
(43)

Instead of considering matrices of complex numbers, we
now have matrices of non commuting numbers.

If we have two matrices of this sort, we can use our
reduction formulas to compute the matrix product. For
exarr}ple, define the matrices of projection operators a
and b:

Cl11R algRG algRB
a = (lglGR CL22G a23GB y
a31BR aggBG a33B

44
. b11R bioRG bi3RB (44)
b = | bo1GR basG ba3GB |,
b31BR b3 BG  b33B
where a,,, and b,,, are complex constants. Then the

product of the two matrices is of the same form. In com-
puting the diagonal terms of the product, one comes upon
terms of the form RGR and these reduce by Eq. (38) to
give, for example:

1+ cos(6,)

(ab)11 = a11bi1 + 5

(@12b21 + a13b31).  (45)
The off diagonal terms of the product have terms of the
form RBG which reduce by Eq. (40). For example, the
RG term is:

(ab)12 = a11b1a+ai2bra+ aizbsa. (46)

14 cos(0,) it
2

The sign of the exponential, as defined in Eq. (40), will
be negative for the RG, GB and BR terms, and positive
for the others.

In Eq. (45) and Eq. (46) we have rules that will al-
low us to do matrix multiplication but we can do better.
Consider the transformation:

Anm if n =m,

/ 2 ip/3 3 —
a;m — Apm HTs(Gé)e—qu ifn=m + 1, (47)
anm\/#s(eé)eiidj/?) ifn=m—1.

This transformation will take the rules of Eq. (45) and
Eq. (46) to the usual matrix multiplication:

(a'0')11 = ayyby + ayabhy + ajghy, (48)

(@' )12 = ay1by + alobyy + aizhis.
The transformation preserves addition, that is, (a+b)/,,,
=al,,, +b,,,, and so any problem defined over addition
and multiplication of the matrices of projection operators
can be converted into a problem of addition and multi-
plication of complex matrices.

In the previous section, we solved the problem of find-
ing the primitive idempotents among circulant 3 x 3 com-
plex matrices. In order to reduce the length of our for-

mulas, define:
7= ) 1eost0s) CZS(QZ). (49)

Then the circulant primitive idempotents among the 3x3
matrices of projection operators are the three matrices

[n){nl:

eti(@+2nm)/3 e—i(¢+2nm)/3

) R —RG ——RB
—i(¢p+2nm)/3 +i(¢pF2nm)/3
+i(¢p+2nm)/3 —i(¢p+2nm)/3
e ""BR “-"-BG B

(50)
To obtain the mass formula (1 4+ v/2cos(6 + 2n7/3))
from the above, we put T = 1/1/2, ¢ = 3§ and, recalling
that tr(RG) = T?, take the trace of the sum of elements
of the matrix.* For example, the trace of the sum over
the top row is:

Vit = tr (R4 SRR RG - OO RE) /3,
= (14 2T cos(¢/3 + 2n7/3))/3.
(51)

The other two rows give the same. The only problem is
that p = 1. If there were only one lepton sector we’d be
done. To explain the lepton hierarchy, we need to slightly
complicate our mass model. Fortunately, the lepton mix-
ing matrix gives a hint on how to do this.

V. THE LEPTON MASS HIERARCHY

Let us assume the tribimaximal[20-22] lepton mixing
matrix:

2 1 9
M O >
V6 VB V2

The above matrix gives the transformations that must
be performed upon the neutrino weak eigenstates
(Ve, Vs v;)t to transform them into the mass eigenstates
(v1,v2,v3)t. In the context of circulant matrices, it makes
more sense to convert this matrix into one that converts
from (ve, vy, v:)! to (ve,va,vs).

To convert Eq. (52) from mass form to circulant form,
we must left multiply it by a matrix of circulant eigenvec-
tors. There are many ways we could do this, depending

4 Tt should be noted that for the Pauli algebra, setting T = 1/1/2
forces ¢ = 4w /4 which is incompatible with the mass data. To
get ¢ = 3§ at the same time as T = \/m we must use a more
complicated algebra, for example CL£(4,1). For such an algebra,
the derivation is similar to that shown.



on the order we choose, but a choice that leads to a par-
ticularly simple form for the product is the following:

2 1
1 a o /6 3

1 11 1 1 1 1

v 1 o « \{é \{3 \/%

Ve V3 V2 (53)

172 0 —iy/1/2

= 0 1 0
1/2 0 i\/1/2

The above matrix is particularly simple in that it is a
24th root of unity. A possible explanation for this is that
the mass relation of neutrinos is not as simple as it is
with electrons. Such a difference can explain both the
differences in both y and § between the sectors.

The coupling between left and right eigenstates given
in Eq. (25) made the assumption that the mass interac-
tion had no intrinsic phase. That is, if we define a mass
operator M that takes left handed states to right handed
states and right handed states to left handed states:

M|R) = |L),
ML) = R). &9
we have assumed that M2 = 1. A more general assump-
tion is that M? is complex:

M?|L) = p*e**|L). (55)

If k = 27/24 = 7/12, then the operator that brings |L)
back to a multiple of |L) is M?%:

M*|L) = p*|L). (56)

This brings in a factor of p?4, which for values of p close
to unity is enough to explain the mass difference between
the charged and neutral leptons.

More particularly, let us suppose that the M?2 operator
acts on the electron preons as follows:

M?le) = p®ler), (57)

but that the same operator, when acting on the neutrino
preons picks up a phase giving:

M*vp) = p*vr). (58)

Then there will be a difference in the masses of the two
sectors of p?2.

The ratio of the masses of the charged leptons over the
neutral ones is given by (1 /pu0)?. The experimental data
from Eq. (17) and Eq. (24) give:

(11 /po)? = (17715.99225(79)/0.1000(26))>
= 3.14(16) x 100 (59)
(2.9999(71))22

This is consistent with the mass operator being one third
of a 24th root of unity.

When the lepton mixing matrix is converted into cir-
culant form in Eq. (53), it becomes a 24th root of unity

in a specific way. The electron and tau neutrinos are ro-
tated, but the muon is left unchanged. Examining the
circulant matrices, we can suppose that it is the muon
which corresponds to the (1,1,1) solution and the elec-
tron and tau that are the solutions with complex phases.
From the transformation to a non commutative algebra,
this suggests that there should be a change to the § phase
between the lepton sectors. From Eq. (18) and Eq. (25)
we have:

5 — 6o = 0.22222204717(48) — 0.486(21)
= —0.264(21) (60)
= —Z1.008(80)

This is consistent with an angular difference between the
two sectors of 7/12, what one might expect from a mass
interaction that requires 24 stages in one sector and only
2 in the other.

VI. PRECISION NEUTRINO MASS
PREDICTIONS

With the model of the previous section, it becomes
possible to predict the neutrino masses, and therefore the
differences between their squares, to very high precision.
We do this by using the electron and muon masses to
compute §; and j1, and then use supposing 1 /o = 3

and 01 —dg = —7/12. The resulting neutrino masses are:
my = 0.000383462480(38) eV 61)
= 0.4116639106(115) x 10712 AMU
ms = 0.00891348724(79) eV (62)
= 9.569022271(246) x 10712 AMU
ms = 0.0507118044(45) eV (63)
= 54.44136198(131) x 1012 AMU

Similarly, the predictions for the differences of the
squares of the neutrino masses are:

m3 —m? = 7.930321129(141) x 105 eV? (64)
= .913967200(47) x 10~2*  AMU?
m3 —mj = 2.49223685(44) x 1073 eV? (65)

— 2872.295707(138) x 1072* AMU?

As with the Koide predictions for the tau mass, these
predictions for the squared mass differences are dead in
the center of the error bars. We can only hope that the
future will show our calculations to be as prescient as
Koide’s.

That the masses of the leptons should have these sorts
of relationships is particularly mysterious in the context
of the standard model.[23] It is hoped that this paper



will stimulate thought among theoreticians. Perhaps the
fundamental fermions are bound states of deeper objects.
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