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Since 1982 the Koide mass relation has provided an amazingly accurate relation between the
masses of the charged leptons. In this note we show how the Koide relation can be expanded to
cover the neutrinos, and we use the relation to predict neutrino masses.

PACS numbers:

In 1982, Yoshio Koide [1, 2], discovered a formula re-
lating the masses of the charged leptons:

(
√

me +√
mµ +

√
mτ )2

me + mµ + mτ
=

3
2
. (1)

Written in the above manner, this relation removes one
degree of freedom from the three charged lepton masses.
In this paper, we will first derive this relation as an eigen-
value equation, then obtain information about the other
degrees of freedom, and finally speculatively apply the
same techniques to the problem of predicting the neu-
trino masses.

If we suppose that the leptons are composite particles
made up of colorless combinations of colored subparti-
cles or preons, we expect that the three colors must be
treated equally, and therefore a natural form for a ma-
trix operator that can cross generation boundaries is the
circulant :

Γ(A,B,C) =

 A B C
C A B
B C A

 . (2)

where A, B and C are complex constants. Other authors
have explored these sorts of matrices in the context of
neutrino masses and mixing angles including [3–5]. Such
matrices have eigenvectors of the form:

|n〉 =

 1
e+2inπ/3

e−2inπ/3

 , n = 1, 2, 3. (3)

This set of eigenvectors are common to more than circu-
lant matrices. Other authors finding uses for these sets
of eigenvectors in the problem of neutrino mixing include
[6–10].

If we require that the eigenvalues be real, we obtain
that A must be real, and that B and C are complex
conjugates. This reduces the 6 real degrees of freedom
present in the 3 complex constants A, B and C to just 3
real degrees of freedom, the same as the number of eigen-
values for the operators. In order to parameterize these
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sorts of operators, in a manner only slightly different from
that chosen in [4], let us write:

Γ(µ, η, δ) = µ

 1 η exp(+iδ) η exp(−iδ)
η exp(−iδ) 1 η exp(+iδ)
η exp(+iδ) η exp(−iδ) 1

 ,

(4)
where we can assume η to be non negative. Note that
while η and δ are pure numbers, µ scales with the eigen-
values. Then the three eigenvalues are given by:

Γ(µ, η, δ) |n〉 = λn |n〉,
= µ(1 + 2η cos(δ + 2nπ/3)) |n〉. (5)

The sum of the eigenvalues are given by the trace of Γ:

λ1 + λ2 + λ3 = 3µ, (6)

and this allows us to calculate µ from a set of eigenvalues.
The sum of the squares of the eigenvalues are given by
the trace of Γ2:

λ2
1 + λ2

2 + λ2
3 = 3µ2(1 + 2η2), (7)

and this gives a formula for η2 in terms of the eigenvalues:

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
=

1 + 2η2

3
, (8)

The value of δ is then easy to calculate from Eq. (5).
We have restricted Γ to a form where all its eigenvalues

are real, but it is still possible that some or all will be
negative. For situations where all the eigenvalues are
non negative, it is natural to suppose that our values are
eigenvalues not of the Γ matrix, but instead of Γ2.

The masses of the charged leptons are positive, so let
us compute the square roots of the masses of the charged
leptons, and find the values for µ1, η2

1 and δ1, where the
subscript will distinguish the parameters for the masses
of the charged leptons from that of the neutral leptons.

Given the latest PDG[11] data (MeV):

m1 = me = 0.510998918(44)
m2 = mµ = 105.6583692(94)
m3 = mτ = 1776.99 + 0.29− 0.26

(9)

and ignoring, for the moment, the error bars, and keeping
7 digits of accuracy, we obtain

µ1 = 17.71608 MeV0.5

η2
1 = 0.5000018

δ1 = 0.2222220
(10)
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The fact that η2
1 is very close to 0.5 was noticed in 1982 by

Yoshio Koide[2] at a time when the τ mass had not been
experimentally measured to anywhere near its present
accuracy. Also see [12]. That δ1 is close to 2/9 went
unnoticed until this author discovered it in 2005.[13]

The present constraints on the electron, muon and tau
masses exclude the possibility that δ1 is exactly 2/9,
while on the other hand, η2

1 = 0.5 fits the data close
to the middle of the error bars. If we interpret Γ as a
matrix of coupling constants, η2 = 1/2 is a probabil-
ity. Thus if the preons are to be spin−1/2 states, the
P = (1 + cos(θ))/2 rule for probabilities implies that the
three coupled states are perpendicular, a situation that
would be more natural for classical waves than quantum
states.

By making the assumption that η2
1 is precisely 0.5, one

obtains a prediction for the mass of the tau. Since the
best measurements for the electron and muon masses are
in atomic mass units, we give the predicted τ mass in
both those units and in MeV:

mτ = 1776.968921(158) MeV
= 1.907654627(46) AMU.

(11)

The error bars in the above, and in later calculations in
this paper, come from assuming that the electron and
muon masses are anywhere inside the error bars given by
Eq. (9).

This gives us the opportunity to fine tune our estimate
for µ1 and δ1. Since the electron and muon data are the
most exact, we assume the Koide relation and compute
the tau mass from them. Then we compute µ1 and then
δ1 over the range of electron and muon masses, obtaining:

δ1 = .22222204715(311) from MeV data
= .22222204717(48) from AMU data.

(12)

If δ1 were zero, the electron and muon would have equal
masses, while if δ1 were π/12, the electron would be mass-
less. Instead, δ1 is close to a rational fraction, while the
other terms inside the cosine are rational multiples of
pi. Using the more accurate AMU data, the difference
between δ1 and 2/9 is:

2/9− δ1 = 1.7505(48) × 10−7, (13)

and we can hope that a deeper theory will allow this
small difference to be computed. This difference could
be written as

1.75 × 10−7 =
4π

312

(
α +O(α2)

)
(14)

for example.
Note that δ1 is close to a rational number, while the

other terms that are added to it inside the cosine of
Eq. (5) are rational multiples of pi. This distinction fol-
lows our parameterization of the eigenvalues in that the
rational fraction part comes from the operator Γ, while
the 2nπ/3 term comes from the eigenvectors. Rather
than depending on the details of the operator, the 2nπ/3

depends only on the fact that the operator has the sym-
metry of a circulant matrix.

We will use m1, m2 and m3 to designate the masses
of the neutrinos. The experimental situation with the
neutrinos is primitive at the moment. The only accurate
measurements are from oscillation experiments, and are
for the absolute values of the differences between squares
of neutrino masses. Recent 2σ data from [14] are:

|m2
2 −m2

1| = 7.92(1± .09)× 10−5 eV2

|m2
3 −m2

2| = 2.4(1 + 0.21− 0.26)× 10−3 eV2 (15)

Up to this time, attempts to apply the unaltered Koide
mass formula to the neutrinos have failed,[15–17] but
these attempts have assumed that the square roots of
the neutrino masses must all be positive.1 Without loss
of generality, we will assume that µ0 and η0 are both
positive, thus there can be at most one square root mass
that is negative, and it can be only the lowest or central
mass.

Of these two cases, having the central mass with a
negative square root is incompatible with the oscillation
data, but we can obtain η2

0 = 1/2 with masses around:

m1 = 0.0004 eV,
m2 = 0.009 eV,
m3 = 0.05 eV.

(16)

These masses approximately satisfy the squared mass dif-
ferences of Eq. (15) as well as the Koide relation as fol-
lows:

m1 + m2 + m3

(−√m1 +
√

m2 +
√

m3)2
=

2
3
. (17)

The above neutrino masses were chosen to fix the value
of η2

0 = 1/2. As such, the fact that this can be done is
of little interest, at least until absolute measurements of
the neutrino masses are available. However, given these
values, we can now compute the µ0 and δ0 values for the
neutrinos. The results give that, well within experimen-
tal error:

δ0 = δ1 + π/12,
µ1/µ0 = 311.

(18)

Recalling the split between the components of the cosine
in the charged lepton mass formula, the fact that π/12
is a rational multiple of pi suggests that it should be re-
lated to a symmetry of the eigenvectors rather than the
operator. One possible explanation is that in transform-
ing from a right handed particle to a left handed particle,
the neutrino (or a portion of it) pick up a phase difference
that is a fraction of pi. As a result the neutrino requires

1 This restriction is difficult to understand given several papers
that have assumed that the neutrino masses themselves may be
negative.[18, 19]
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12 stages to make the transition from left handed back
to left handed (with the same phase), while the electron
requires only a single stage, and it is natural for the mass
hierarchy between the charged and neutral leptons to be
a power of 12− 1 = 11.

We will therefore assume that the relations given in
Eq. (18) are exact, and can then use the measured masses
of the electron and muon to write down predictions for
the absolute masses of the neutrinos. The parameteriza-
tion of the masses of the neutrinos is as follows:

mn =
µ1

311
(1 +

√
2 cos(δ1 + π/12 + 2nπ/3)), (19)

where µ1 and δ1 are from the charged leptons. Substitut-
ing in the the measured values for the electron and muon
masses, we obtain extremely precise predictions for the
neutrino masses:

m1 = 0.000383462480(38) eV
= 0.4116639106(115)× 10−12 AMU (20)

m2 = 0.00891348724(79) eV
= 9.569022271(246)× 10−12 AMU (21)

m3 = 0.0507118044(45) eV
= 54.44136198(131)× 10−12 AMU (22)

Similarly, the predictions for the differences of the
squares of the neutrino masses are:

m2
2 −m2

1 = 7.930321129(141)× 10−5 eV2

= .913967200(47)× 10−24 AMU2 (23)

m2
3 −m2

2 = 2.49223685(44)× 10−3 eV2

= 2872.295707(138)× 10−24 AMU2 (24)

As with the Koide predictions for the tau mass, these
predictions for the squared mass differences are dead in
the center of the error bars. We can only hope that the
future will show our calculations to be as prescient as
Koide’s.

That the masses of the leptons should have these sorts
of relationships is particularly mysterious in the context
of the standard model.[20] It is hoped that this paper
will stimulate thought among theoreticians. Perhaps the
fundamental fermions are bound states of deeper objects.
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