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In quantum mechanics, the Fourier Transform commonly converts from position space to mo-
mentum. For finite dimensional Hilbert spaces, the analog is the discrete (or quantum) Fourier
transform, which has many applications in quantum information theory. We explore applications of
this discrete Fourier transform to the elementary particle generations, and then present a related and
elegant new parameterization for unitary 3 × 3 matrices that is compatible with the tribimaximal
MNS matrix.
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I. INTRODUCTION

In quantum mechanics, the Fourier transform takes po-
sition space to momentum space. These observables are
complementary, or unbiased. That is, a state which is an
eigenstate of position has no information about its mo-
mentum and vice versa. For finite dimensional Hilbert
spaces, the discrete (or quantum) Fourier transform [1]
converts a basis into a complementary basis. Here we will
mostly be concerned with the discrete Fourier transform
F (v) = ṽ of vectors v from a three dimensional Hilbert
space, that is, the qutrit space. The transform may be
written using a unitary matrix F :

ṽ = Fv =
1√
3

 ω ω∗ 1
ω∗ ω 1
1 1 1

 v1
v2
v3

 . (1)

where ω = exp(2iπ/3) is the complex cubed root of unity.
Given a set of basis vectors for the Hilbert space {vk},
the Fourier transform converts this basis set into a new
basis set {ṽk} that is unbiased with respect to the original
basis set.

One can also consider collections of basis sets for a
finite dimensional Hilbert space, each of which is unbi-
ased with respect to the others. Such a collection is called
“mutually unbiased”. The maximum possible size of such
a collection, for general dimension n, is an important un-
solved problem in quantum information theory. For n
prime, or the power of a prime, it is known that collec-
tions containing n+ 1 mutually unbiased basis sets exist.

The Fourier transform of state vectors is associated
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with a transformation of linear operators O, given by

Õ = FOF−1. (2)

Since the Fourier transform matrix F is unitary, the
Fourier transform of a unitary matrix is unitary. The
columns of a unitary matrix can be considered as a set of
basis vectors for the Hilbert space and vice versa. Con-
sequently, a complete set of mutually unbiased bases for
the Hilbert space of dimension n defines a set of n + 1
unitary operators.

For n = 2, a complete set of mutually unbiased bases
is given by {F2, Y, Y

2 = I} where F2 is the 2× 2 Fourier
transform matrix:

F2 =
1√
2

(
−1 1
1 1

)
, (3)

which happens to be equal to (σx + σz)/
√

2, and Y =
(1+σy)/

√
2 which is

√
2 times the density matrix for spin

in the y direction. Note that Y is a unitary square root of
the identity I. There are other Hadamard type operators
[2] that also transform a basis set into a mutually unbi-
ased basis set. The collection of all these operators forms
a finite set, in principle characterising the measurable
quantities for quantum mechanics in a given dimension.
For dimension 3, a complete set of four mutually unbi-
ased bases is given by the collection {F,R,R2, R3 = I}
where R is

R =
1
3

 1 ω 1
1 1 ω
ω 1 1

 , (4)

a unitary cubed root of the identity.
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II. EXPERIMENTAL EQUIVALENCE CLASSES

Experimentally, the CKM and MNS matrix elements
can only be measured in the form of squared magnitudes
(probabilities). A matrix of probabilities contains much
less information than a unitary matrix. Consequently,
while a parameterization of the unitary 3×3 matrices re-
quire nine parameters, one can parameterize the squared
magnitudes of such a matrix with only four parameters.
We will call two unitary matrices equivalent if one can
be obtained from the other by multiplication of rows and
columns by complex phases. This relation defines equiva-
lence classes of matrices. For a given probability matrix,
the number of different equivalence classes that give that
probability matrix depends on the symmetry of the prob-
ability matrix.

The CKM matrix entries are approximately in 2 + 1
block diagonal form. Squaring recent estimates [3] of the
CKM amplitudes we have:

PCKM =

 0.9483(5) 0.0516(5) 0.000016(1)
0.0516(5) 0.9467(5) 0.00178(7)
0.00007(1) 0.00173(6) 0.99820(7)

 (5)

The 2 + 1 block diagonal unitary matrices are easy to
parameterize. First let θ be a real angle, and let α, β, γ
and η be four complex phases. Define U(θ, α, β, γ) as

U(θ, α, β, γ) =

 αγ cos(θ) −α sin(θ) 0
βγ sin(θ) β cos(θ) 0

0 0 1

 . (6)

Then a complete parameterization of the 2 + 1 block di-
agonal matrices is given by η U where η is an overall
complex phase.

While the usual parameterizations of the CKM matrix
use four mixing angles and one complex phase, the above
parameterization of the 2 + 1 block matrices uses four
complex phases and one mixing angle. Since the phase η
is just an overall complex phase, we will set η = 1 and
consider a parameterization with four variables: three
complex phases α, β and γ, and one mixing angle θ.

Since F is a unitary matrix, Ũ(θ, α, β, γ) is also a uni-
tary matrix. It is also magic, which is to say that the
elements of a row or column sum to the same number,
one. This is reminiscent of the unitary property of the
CKM matrix, that the sum of the squared magnitudes of
the elements of each row or column sum to one.

In general, 3 × 3 complex (unitary) matrices require
nine complex (real) parameters. Similarly, the 2+1 block
diagonal complex (unitary) matrices require five complex
(real) parameters.

Given Ũ(θ, α, β, γ) we can define a parameterization of
unitary matrices by multiplying the rows and columns of
Ũ by complex phases. There are three rows and three
columns, but multiplying all rows by a complex phase is
equivalent to multiplying all columns by the same phase
so there is a reduction by one degree of freedom. This

gives a full parameterization of unitary 3× 3 matrices of
the form

DrF U(θ, α, β, γ) F−1Dc (7)

where Dr and Dc are diagonal matrices that give the
complex phases multiplying rows and columns.

III. CIRCULANT MATRICES

An m-circulant matrix is defined by its first row;
the other rows being equal to the first except for a
shift of each entry m places to the right. The discrete
Fourier transform diagonalises 1-circulants, and a two
dimensional Fourier transform similarly diagonalises a 1-
circulant 2×2 matrix, which corresponds to permutations
of two objects. In dimension three, 2-circulant matrices
are transforms of the off diagonal 2 + 1 block matrices.

A 3× 3 m-circulant may be characterized by the three
complex numbers that are the entries of its first row.
Any magic 3×3 matrix can be written as the sum of a 1-
circulant and a 2-circulant matrix. This defines a natural
decomposition for the magic unitary matrices, but such
a decomposition is not quite unique.

By choosing the overall complex phase appropriately,
we can arrange for an arbitrary 3×3 magic unitary matrix
to be written as the sum of a real 1-circulant matrix and
an imaginary 2-circulant matrix. Let a, b, c, and d be
four real numbers. Define the six real numbers I, J , K,
R, G, and B as follows:

I = [cos(a) + 2 cos(b) cos(c+ 0π/3)]/3,
J = [cos(a) + 2 cos(b) cos(c+ 2π/3)]/3,
K = [cos(a) + 2 cos(b) cos(c+ 4π/3)]/3,
R = [cos(a) + 2 cos(b) cos(d+ 0π/3)]/3,
G = [cos(a) + 2 cos(b) cos(d+ 2π/3)]/3,
B = [cos(a) + 2 cos(b) cos(d+ 4π/3)]/3.

(8)

Then there is a magic unitary matrix W

W =

 I J K
K I J
J K I

± i
 R B G
B G R
G R B

 , (9)

which defines a parameterization of the 3× 3 magic uni-
tary matrices (and therefore the equivalence classes of
unitary matrices). A parameterization of all unitary 3×3
matrices is provided by Dr W Dc. Note that the nine
entries of W are all possible sums of one element from
{I, J,K} with one element from {iR, iG, iB}.

Since the complex numbers on the top row of an m-
circulant define the whole matrix, one can think of the m-
circulants as forming a complex n-vector space. The basis
elements for the m-circulants are permutation matrices,
that is, they are matrices of zeroes and ones that define
a permutation on the components of n-vectors. With
respect to Eq. (8), the elements I, J , and K correspond
to the even permutations on three elements, while R, G,
and B correspond to the odd permutations.
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Since the 1-circulant component is the real part of the
unitary matrix, while the 2-circulant is the imaginary
part, their contributions to the matrix of probabilities
do not have any interference. That is, there is a natural
decomposition of the probability matrix into the sum of
a real 1-circulant matrix and a real 2-circulant matrix.
This decomposition uses three probabilities from the 1-
circulant matrix and three more from the 2-circulant.
The probabilities for the full unitary matrix correspond
to the nine possible results obtained by adding one of the
three 1-circulant probabilities, {I2, J2,K2}, to one of the
three 2-circulant probabilities, {R2, G2, B2}.

IV. THE MNS LEPTON MIXING MATRIX

Present measurements of the MNS matrix probabilities
are in agreement with the tribimaximal values:

PMNS =


2
3

1
3 0

1
6

1
3

1
2

1
6

1
3

1
2

 . (10)

By choosing the overall complex phase appropriately, we
can write a representative from an associated equivalence
class of unitary matrices as the sum of two circulants, one
real and one imaginary. For the MNS matrix, one may
choose:

UMNS =
1√
6

 √2 1 0
0
√

2 1
1 0

√
2

± i√
6

 √2 −1 0
−1 0

√
2

0
√

2 −1

 .

(11)
Thus the tribimaximal probabilities may be characterized
using the nine possible results obtained by selecting one
element of {1/3, 1/6, 0} and adding it to an element of
{1/3, 1/6, 0}.

The Fourier transform of UMNS also takes a particu-
larly simple form:

ŨMNS = 1√
6

 √2 −1 0
−1
√

2 0
0 0

√
2− 1


+ 1√

6

 ω∗ 0 0
0 ω 0
0 0 1

+ 1√
6

 0
√

2ω∗ 0√
2ω 0 0
0 0

√
2

 ,

(12)

involving cubed root phases ω, rather than the phases i
that appear in the more symmetric representation used
in Eq. (11). In other words, the Fourier transform re-
flects the difference between the root systems [4] for (a)
su(2) × u(1) ⊂ su(2) × su(2) and (b) su(3). The diago-
nal matrix, with the cubed roots of unity, is the standard
Weyl generator for the qutrit torus, namely the three di-
mensional generalization of the Pauli matrix σz. The
discrete Fourier transform F (ŨMNS)F−1 takes this di-
agonal to a permutation (231), that is, the K part of the
matrix given in Eq. (8).

Define the Fourier transform for the 2 + 1 block diag-
onal matrices as:

F21 =
1√
2

 −1 1 0
1 1 0
0 0

√
2

 . (13)

This is a unitary matrix, and F F21 is also a unitary ma-
trix with tribimaximal entries, although permuted from
the usual form. This factorisation is in line with the A4

discrete symmetry [5] studied in the context of neutrino
mass generation in the standard model, since this group
is the product Z3nZ2 of cyclic permutation groups. Here,
however, the finite group appears as a discrete structure
in quantum information theory, rather than as a sub-
group of a large continuous symmetry.

An alternative representation of the tribimaximal mix-
ing matrix is the product RF21, where R is the other
3 × 3 complementary observable automorphism [2]. Es-
sentially, the only other product involving the mutually
unbiased operators is of the form:

FR2 ≡
1√
6

 ω ω∗ 1
ω∗ ω 1
1 1 1

 1 i 0
i 1 0
0 0

√
2

 (14)

=
1√
6

 ω + iω∗ iω + ω∗
√

2
iω + ω∗ ω + iω∗

√
2

1 + i 1 + i
√

2

 ,

which yields the probability matrix

‖FR2‖2 =
1
3

 1− x 1 + x 1
1 + x 1− x 1

1 1 1

 , (15)

where x =
√

3/2. The product of (a permuted form of)
PMNS and ‖FR2‖2 returns another permuted form of
PMNS when x = 1/2. In general, for different values of
x, this product

1
3

 1 + x 1− x 1
1 + x 1− x 1
1− 2x 1 + 2x 1

 (16)

describes all magic probability matrices of PMNS type,
namely with one unbiased column equal to (1/3, 1/3, 1/3)
and two rows with an unbiased pair. A permitted small
deviation from x = 1/2 corresponds to the sinθ13 term in
the literature [6].

V. MASS MATRICES

In [7] the Koide [8] formula:

2(
√
me +

√
mµ +

√
mτ )2 = 3(me +mµ +mτ ) (17)

for charged lepton masses was recovered in the form of a
3 × 3 circulant complex matrix. This analysis has been
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extended successfully to a set of three neutrinos. These
mass matrices take the form:

M = η

 1 reiθ re−iθ

re−iθ 1 reiθ

reiθ re−iθ 1

 (18)

for real η, r and θ. The eigenvalues are given by

λk = η[1 + 2rcos(θ + 2πk/3)], (19)

where mi = λ2
i are the rest mass values. The Koide

formula results from setting r2 = 1
2 , and this choice may

be applied also to the neutrino matrix.
In general, the 3×3 Fourier transform takes a diagonal

mass matrix with entries (m1,m2,m3) to the 1-circulant
matrix with top row elements

(m1 +m2 +m3)/3, (20)
(m1ω +m2ω

2 +m3)/3,
(m1ω

2 +m2ω +m3)/3.

VI. CONCLUSIONS

In summary, the special operators associated to sets of
mutually unbiased bases [2] in quantum mechanics may
be used to define an elegant parameterization of 3 × 3
unitary matrices and their probability matrices. These
operators are also associated with circulant mass matri-
ces.

Although the elements of the MNS matrix are partic-
ularly simple from this point of view, the CKM matrix
is more complicated. Given that the low energy domain
better approximates a weak coupling limit, one does not
expect quark mixing to be as straightforward as neutrino
mixing.

Observe also that, in quantum information theory, the
operators appearing here act locally on states for Hilbert
spaces of dimension two (qubit) or three (qutrit), where
several qubits or qutrits may be combined using the ten-
sor product of Hilbert spaces. The nonlocal informa-
tion content of the CKM matrix may involve mixing in
higher dimensional state spaces, such as the 27 dimen-
sional space for three qutrits. Such ternary states are
reducible to 3 × 3 form when state amplitudes are ex-
pressed in terms of certain projective coordinates [9].

This work is partly motivated by a modern diagram
calculus for finite dimensional quantum mechanics [11],
in which an observable is described by specific rules on
graph vertices and edges, and where the introduction of
colored vertices permits simple rules for complementary
observables.

Automorphisms such as the Fourier transform interact
nicely with the vertices that represent basis structures.
Quantum information circuits using the Fourier trans-
form may be expressed simply in diagrammatic form.
Underlying these diagrams is the abstract concept of
a monoidal category, now common in many areas of
physics, such as the analysis of two dimensional con-
densed matter systems exhibiting anyonic behaviour.

In other words, the discrete Fourier transform may be
linked to highly abstract concepts being used to discuss
mass generation in approaches to particle physics that do
not rely solely on classical symmetry principles.
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