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Recent advances[1] in Bohmian mechanics suggest that quantum mechanics should consider the
density matrix as the fundamental quantum object rather than the spinor wave state. This change
allows a theory that is invariant with respect to the U(1) gauge, but still reproduces the results of
gauge theory such as the Aharonov-Bohm effect; and in a simpler manner. This advance amounts
to retreating from a formalism based on Hilbert space to one based on a Banach space. For a given
Banach space there are many Hilbert spaces that it can be factored into. The choice of Hilbert
space produces an unphysical gauge freedom.

This paper applies Hestenes’ Geometric Algebra (GA) to density matrices and generalizes to
multiple particles by using Schwinger’s elegant “measurement algebra” (SMA). Doing this eliminates
the arbitrary orientation in Hestenes’ version of the Dirac equation. More importantly, this allows
us to produce a theory that is gauge invariant with respect to the more general gauges associated
with forces other than U(1).

In moving from a Hilbert space to a Banach space, one loses the automatic use of complex
numbers in defining probabilities. We show that there is an alternative probability interpretation
that is purely geometric and for the usual representations of Clifford algebras gives identical values
to the usual spinor probabilities of quantum mechanics. We also show interesting representations
where the two methods of defining probabilities differ.

PACS numbers:

A 2004 paper by Brown and Hiley[1] describes the
Bohmian mechanics of density matrices. The older
theory of Bohmian mechanics was tied to the x-
representation. By using density matrices and the idem-
potency relation:

µ µ = µ, (1)

the new theory shows that the Bohmian interpretation is
general and is not tied to any particular representation.
Thus Bohmian mechanics now follows the full symplectic
symmetry of quantum mechanics. For a discussion of
the various ways density matrices appear in Bohmian
mechanics, see [2], which suggests that spin requires that
Bohmian mechanics use density matrices.

An important advantage of the density matrix version
of Bohmian mechanmics is that it uses elements that
are (U(1)) gauge invariant and reproduces the results of
gauge theory, such as the Aharonov-Bohm phase, in a
very simple way.[1] While Brown and Hiley concentrate
on position and momentum considerations, in this pa-
per we will instead be concentrating on spin and internal
symmetries.

In the 1980s, David Hestenes wrote the Dirac wave
equation in fully geometric form using his “Geometric
Algebra” (GA). The imaginary number i of the usual
spinor form of the Dirac equation is replaced by an arbi-
trary geometric orientation (bivector) in Hestenes’ the-
ory. While this orientation (or type of gauge) does not
appear in the predictions of the theory, some physicists
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have found it inelegant.[3] We show (trivially) that on
passing to the density matrix form, Hestenes’ Dirac equa-
tion loses its arbitrary orientation. Following the method
of Trayling [4] we use ideals of Clifford algebras to repre-
sent different particles.

In the 1950s and 60s, Julian Schwinger developed[5] an
elegant general scheme for quantum kinematics and dy-
namics appropriate to systems with a finite number of dy-
namical variables, now known as “Schwinger’s Measure-
ment Algebra” (SMA). The “selective measurements”,
M(a′) of the SMA are particularly elegant in that they
possess no unphysical gauge freedom. A particular mea-
surement of this sort can possess a unique representa-
tion in the GA. On the other hand, we will show that
Schwinger’s “general selective measurements” M(a′, b′),
when written in the GA, will have an arbitrary orienta-
tion of the same sort seen in Hestenes’ Dirac equation.

In avoiding the arbitrary orientation of Schwinger’s
general selective measurements, we will find reason to
suspect that the splitting of measurements into bras and
kets may be unphysical and a mathematical convenience
only. This leads us to doubt the use of complex numbers
in Born’s probability postulate. In density matrix the-
ory, the use of complex numbers is replaced by the use of
the trace, but this is also, in general, a complex number.

As a replacement for the use of complex numbers in
quantum mechanics, we find that the natural Banach
space defined by a Clifford algebra as a vector space over
its canonical basis elements allows us to calculate prob-
abilities without recourse to the traditional factoring of
the Banach space of density matrices into a Hilbert space
of spinors or the use of a complex valued trace. For a cal-
culation showing this equivalence for the example of the
Pauli algebra see the Appendix A. We show that the
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equivalence holds for the usual representations of Clif-
ford algebras used in physics such as the Pauli and Dirac
algebras, but that any nontrivial Clifford algebra can be
put into a matrix representation where the probabilities
are not equivalent. The calculation relies on a character-
ization of the matrix representations of Clifford algebras
that is based on primitive idempotents and is very effi-
cient and easy to use.

The usual spinor probability interpretation does well at
modeling the individual particles of the Standard Model.
We show that the application of the modified probabil-
ities contemplated here is to the relationships between
different particles. Accordingly, we provide some rela-
tionships between complex phase and probability that
may be useful in characterizing representations of Clif-
ford algebras beyond those used in the Standard Model.

I. ORGANIZATION OF THE PAPER

Section (II) is a discussion of the orientation gauge
of Hestenes’ version of the Dirac equation. It is easily
shown that this orientation gauge disappears when the
wave function is converted to density matrix form. This
section is written in the usual form of the Dirac algebra,
gamma matrices. In order to work with more general
Clifford algebras, we include Section (III) to introduce
the notation and provide some exercises for the reader
unfamiliar with Clifford algebra.

For density matrices, we will need only the simplest
parts of Schwinger’s measurement algebra[5], these are
introduced in Section (IV), where we also show that
the SMA is compatible with the density matrix formal-
ism (and therefore provides a multiparticle generaliza-
tion of the density matrix). In Section (V) we intro-
duce Schwinger’s “general measurement” symbols and
show that despite their apparent simplicity and general-
ity, they nevertheless imply a choice of orientation gauge.

”Square spinors” are how one defines a spinor in the
algebra of operators. In the usual Pauli or Dirac repre-
sentations, this amounts to packing the spinor into one
column of a matrix, thus putting both the operators and
spinors into the same, matrix, form. Square spinors are
the subject of Section (VI). With square spinors intro-
duced, we can derive the relationship between the trace
function defined in the SMA and the natural squared
magnitude defined on a Clifford algebra, and this is the
subject of Section (VII).

In Section (VIII) we consider products of projection
operators in the Pauli algebra. Physically, these corre-
spond to sequences Stern-Gerlach filters. We derive a
simple method for calculating these products and show
some symmetries. Section (IX) analyzes interference be-
tween sequences of Pauli type Stern-Gerlach filters.

Section (X) derives a relationship between the proba-
bilities and phases of products of three Pauli type filters,
and generalizes this result for other Clifford algebras and
the new probability interpretation. Section (XI) demon-

strates how to obtain non standard representations of
Clifford algebras by using exponentials, and applies these
to toy models of elementary particles and their interac-
tions.

Section (XII) shows how the formula Pθ = (1 +
cos(θ))/2 changes when the Pauli algebra is altered so
that the spinors share a part from a hidden dimension of
either +1 or −1 signature. Section (XIII) introduces a
replacement for complex phases in the context of the un-
usual representations of Clifford algebras used here. Sec-
tion (XIV) collects together the information about the
projection operators of the Pauli algebra and generaliza-
tions of the Pauli algebra from the previous 6 sections
into a practical set of rules.

Section (XV) that in the context of the Schwinger Mea-
surement algebra modeled in a Clifford algebra, the ele-
mentary fermions may be modeled as composite particles
made up of 3 preons (subparticles) each. Section (XVI)
derives the relationship between the SMA of a preon and
the SMA of the deeply bound composite particles com-
posed of preons. We define a natural form for cross gen-
eration operators.

Section (XVII) it is shown that the experimentally
measured masses of the charged leptons can be produced
by a particularly simple operator. We generalize this to
the masses of the quarks. In Section (XIX), we use the
quark and charged lepton masses to predict the masses
of the neutrinos.

Section (XX) wraps up the conclusions of the paper
and Section (XXI) acknowledges assistance given to the
author.

II. ORIENTATION IN HESTENES’ DIRAC
EQUATION

When the Dirac equation is written in Hestenes’ Geo-
metric Algebra:1

−∇ΨH γ1γ2 = mΨH γ0, ΨH ∈ CL+
1,3 (2)

there is an orientation assigned to the wave equation and
to the wave values. In the above, the orientation chosen
is γ1γ2. This “bivector” defines the geometric equivalent
of the imaginary number i of the usual Dirac equation.
Of course this orientation does not appear in the physical
predictions of the theory; it is only a gauge freedom. For
a discussion of this gauge issue in the context of the choice
of signature, see Pezzaglia’s 1997 paper [9, §V]. A very
useful short paper by William E. Baylis is worth quoting
extensively:

4* Symmetry of the Hestenes Equation

1 For example, compare [6, 10.2] with [7, Eq (166)] or [8, Eq (53)].



3

Part of Joyces stated reason for seeking an
alternative algebraic form of the Dirac equa-
tion was that he viewed the Hestenes form
(*) as giving special status to given direc-
tions in space. In particular, because equa-
tion (*) contains the γ1γ2 bivector, it was felt
that the corresponding plane was singled out.
On this basis it might be disappointing that
every solution to the Joyce equation (*) is a
combination of solutions to two equations of
the Hestenes form. However, the asymmetry
that Joyce saw in the Hestenes equation is
only apparent, as explained below.
The principal advantages of the Hestenes for-
mulation of the Dirac equation are (1) that
it acts in the real Dirac algebra CL1,3 rather
than in the more traditional complex Dirac
algebra used by most authors as well as by
Joyce, and (2) it offers unambiguous geo-
metrical interpretations for expressions in the
theory. The fact that the spinor of the
Hestenes formulation is an even element and
that the Hestenes equation preserves its even-
ness suggests that the Dirac theory can also
be formulated in the real Pauli algebra CL3,
which is isomorphic to CL+

1,3 . Indeed there
is a very simple covariant formulation[*][*][*]
using paravectors[*] of CL3, and this is closely
related to formulations in biquaternions and
2 × 2 matrices.[*][*][*] Further background
and references can be found in a couple of
recent papers.[*][*]
In both the CL3 formulation and in Hestenes
analysis, the spinor plays the role of a rel-
ativistic transformation amplitude from the
reference frame of the fermion to the lab
frame. The orientation of the reference frame
is not significant since global gauge transfor-
mations ΨH → ΨHR, where R is a fixed spa-
tial rotor, can rotate it arbitrarily. It is there-
fore of no physical consequence that the par-
ticular bivector γ1γ2 appears in the Hestenes
equation (*).[*] [3, §4]

The density matrix form is itself inherently free of the
orientation issue of the spinor form. To change from one
orientation for ψ to another one uses the transformation
ψH → ψHR as mentioned above by Baylis. But RR† =
1 and therefore the density matrix does not depend on
orientation:

ρ = ψHψ
†
H → ψHRR

†ψ†H = ρ. (3)

Schwinger’s measurement algebra appears to be immune
to the orientation issue but in the next section we will
show that this is the case only if one avoids his “general
measurements”.

It is interesting that if one considers the elementary
particles to be the handed, or chiral states, so that the

appropriate Dirac equation is massless, the orientation of
Hestenes’ Dirac equation can also be removed. Following
the notation of the Baylis paper cited above, Hestenes’
Dirac equation, Eq. (2) becomes

−∇ΨH γ1γ2 = 0, ΨH ∈ CL+
1,3 (4)

and one can right multiply by γ2γ1 to give

−∇ΨH = 0, ΨH ∈ CL+
1,3. (5)

Thus there is no orientation issue here at least at the
preon level. That the orientation issue arises only with
the introduction of mass suggests that mass, as an inter-
action between preons, has to do with orientation.

Another argument for preferring a density matrix for-
malism to spinors is that ensembles can be described in
density matrix form in a particularly natural way, and
there is a simple relationship between the entropy of a
quantum ensemble in the density matrix form:

S = −k tr(ιA ln(ιA)), (6)

where k is Boltzmann’s constant. Also, the equation of
motion for the density matrix can be written in the form
for Liouville’s equation in classical statistical mechanics
if one modifies the Hamiltonian appropriately:

∂t ι = −[ι,H/i~]. (7)

III. CLIFFORD ALGEBRAS AND NOTATION

In this article we will frequently have cause to work
out examples using the Pauli or Dirac algebras. Instead
of using a specific matrix form for these algebras we will
instead use “hat” notation to indicate the geometric con-
tent of the elements. For this we will here introduce the
notation for the Pauli and Dirac algebras. Rather than
treating these as specific matrices, we will instead treat
them as elements of Clifford algebras as we now explain.

The Pauli algebra will be defined by the three CL(3, 0)
Clifford algebra vectors x̂, ŷ and ẑ (that correspond to
the usual matrices σx, σy and σz), along with all possible
products, and all sums multiplied by real numbers. These
three vectors each square to 1 and anticommute among
themselves:

x̂x̂ = ŷŷ = ẑẑ = 1,
x̂ŷ = −ŷx̂, ... (8)

In using x, y, z notation, we do not intend on requiring
that the canonical basis vectors be associated with the
usual spatial dimensions. The Pauli algebra also arises
in internal symmetries such as isospin. The set of all
possible products includes eight elements, and these form
the basis for the Pauli algebra over the reals. We use
“wide hats” to indicate that these products individually
have geometric interpretations. For example, x̂ŷ = x̂y
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indicates a rotation in the x−y plane. The eight possible
products are:

1̂, x̂, ŷ, ẑ,
x̂yz, ŷz, x̂z. x̂y

(9)

When 1̂, x̂, ŷ and ẑ are replaced by the 2×2 unit matrix
and the Pauli spin matrices, respectively, the above eight
products provide a basis set for the 2×2 complex matrices
over the reals. That is, any 2× 2 complex matrix α̂ can
be written as a sum:

α̂ = α11̂ + αxx̂+ ...+ αxyzx̂yz, (10)

with αχ taken from the reals. The element x̂yz is special.
In the Clifford algebra, it is the unit pseudoscalar. In
the Pauli matrices, it is the imaginary unit matrix. In
either case it commutes with all the other elements of
the algebra and squares to −1. We will not write x̂yz
as i, but instead will reserve i for its traditional use as a
square root of −1.

For the Dirac algebra, we will use the (−,+,+,+) sig-
nature. The correspondence of the CL(3, 1) Clifford al-
gebra vectors and the traditional gamma matrices is:

x̂ ≡ γ1, ŷ ≡ γ2, ẑ ≡ γ3, and t̂ ≡ γ0. (11)

The vectors square to the signature and anticommute:

x̂x̂ = ŷŷ = ẑẑ = −t̂t̂ = 1
x̂ŷ = −ŷx̂, ... (12)

Using the above set of anticommutation and squaring
equations, any product of the vectors can be reduced to
± one of sixteen possible products. As before, we denote
these with wide hats. The first eight are identical to the
Pauli algebra products, the rest include factors of t̂:

1̂, x̂, ŷ, ẑ,
x̂yz, ŷz, x̂z. x̂y

t̂, x̂t, ŷt, ẑt,

x̂yzt, ŷzt, x̂zt. x̂yt

(13)

When the canonical basis vectors x̂, ŷ, ẑ and t̂ are re-
placed by some specific choice of the Dirac gamma ma-
trices, the above sixteen products provide a complex basis
set for the complex 4 × 4 matrices. That is, any 4 × 4
complex matrix α̂ can be written as a sum:

α̂ = α11̂ + αxx̂+ ...+ αxyztx̂yzt, (14)

where αχ are complex numbers. The element x̂yzt is
special. In the Clifford algebra it is the unit pseudoscalar
and squares to −1. Many other elements of the algebra
also square to −1 such as, for example, ŷz or 2.6x̂− 2.4t̂.
But no real element of the algebra squares to −1 and
commutes with all the other elements. In addition, no
element commutes with all the other elements except 1̂
and its multiples.

The product of the three Pauli matrices:

x̂ŷẑ =
(

0 1
1 0

) (
0 −i
i 0

) (
1 0
0 −1

)
= i

(
1 0
0 1

) (15)

is the imaginary unit so it is natural in the Pauli alge-
bra to use complex numbers. But there is no product
of gamma matrices that is the imaginary unit. Instead,
to write the imaginary unit over the gamma matrices,
one must take the imaginary multiple of the unit matrix.
This is equivalent to the statement that the real Clif-
ford algebra CL(3, 1) does not contain any elements that
square to −1 and commute with the algebra.

We will also use examples taken from the Clifford al-
gebra CL(4, 1). We will designate the canonical basis
vectors as x̂, ŷ, ẑ, ŝ and t̂. As usual, these square to the
appropriate signature and anticommute:

x̂2 = ŷ2 = ẑ2 = ŝ2 = −t̂2 = 1
x̂ŷ = −ŷx̂, .... (16)

The possible products of the 5 basis vectors gives 25 = 32
distinct products, 1̂, x̂, ...x̂yzst, and these 32 products
form a real basis for the Clifford algebra CL(4, 1). The
unit pseudoscalar, x̂yzst, commutes with all the elements
of the algebra and squares to −1, and so forms a geomet-
ric imaginary unit i. However, note that we will not
write i for x̂yzst, and will instead reserve i for its tradi-
tional mathematical use as a non real root of the equation
x2 = −1.

When we consider complex Clifford algebras, we may
treat i as if it were a canonical basis vector of the al-
gebra. For example, 2.5 îxy is to signify 2.5i x̂y. As
an algebraic element, the effect is to add i to the list of
canonical basis vectors subject to the additional algebraic
rules that it squares to −1 and commutes with the other
vectors:

î̂i = −1, î x̂ = x̂ î..., (17)

where χ is any other canonical basis vector (or, indeed,
any element of the algebra). The inclusion of î among the
canonical basis vectors doubles the number of products.

Some example calculations may be useful:

x̂yz ŷzt = −x̂t,
x̂yzst ŷ = −x̂yst,
x̂t ẑt = x̂z,
x̂yzs x̂yzs = 1,
îxy îxy = 1,
(cos(θ)x̂+ sin(θ)ŷ )2 = 1,
(cosh(θ)ît+ sinh(θ)x̂yz)2 = 1,

where θ is any real number. The first three of the above
are examples of simple products of canonical basis vec-
tors. The next four are examples are “roots of unity”.
We will follow the mathematical literature and refer to
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elements that satisfy ι2 = ι as “idempotent”, unless they
have an immediate physical interpretation as projection
operators or measurements. Four examples of idempo-
tents:

0.5 + 0.5x̂,
0.75− 0.25îxz − 0.25ŷst+ 0.25îxyzst,
0.5 + 0.5µ if µ2 = 1,
0.5 + 1.3x̂+ 1.2x̂y.

(18)

Most of this paper deals with the structure of idempo-
tents, and their products, in the context of a Clifford
algebra.

Since a Clifford algebra is written as a vector space,
its various components can be extracted. Of these, the
most important part is the real (or complex) component.
We will follow the literature in extracting this component
with “blade” notation:

〈α11̂ + αxx̂+ ...〉0 = α1. (19)

If one represents a Clifford algebra in N × N matrices
so that 1̂ is represented by the unit matrix, one has that
〈Ψ〉0 = tr(Ψ)/N , so this is useful for computing expecta-
tion values of operators in standard quantum mechanics.
Nevertheless, we will have little use of this function.

In preference to 〈 〉0 or tr( ), we will instead use
squared magnitudes of Clifford algebra elements. We de-
fine | |2G for real or complex Clifford algebras as:

|α11̂ + αxx̂+ ...|2G = |α1|2 + |αx|2 + ... (20)

As an exercise, it may be noted that 〈 〉0 and | |2G are
identical for the first two idempotents listed in Eq. (18).
The fourth idempotent has a component, 1.2x̂y, that
squares to a negative value and therefore the squared
magnitude is greater than 0.5 = 〈0.5 + 1.3x̂+ 1.2x̂y〉0.
The third idempotent can go either way, depending on
the nature of µ. We will be discussing this interesting fact
at length in section VII where we justify the preference
for using | |2G over the traditional trace.

We will sometimes call the unit vectors, x̂, ŷ, ẑ and
t̂, “canonical basis vectors”. These elements, as well
as more general products, such as 1̂, x̂y or îxyzt we
will call “canonical basis elements”. Vectors such as
cos(α)x̂+sin(α)x̂) with α real, we will also call canonical
basis vectors, but we will not refer to mixed signature
unit vectors such as cosh(α)x̂+sinh(α)t̂ as canonical ba-
sis vectors. We distinguish these two types of unit vectors
because the geometric squared magnitude of the mixed
signature unit vectors is not unity. Similarly, mixtures
of canonical basis elements that still square to unity and
have unit squared magnitude, such as cos(α)x̂y+sin(α)x̂z
we will also call canonical basis elements. The canonical
basis elements, as well as any elements that happen to
square to ±1, can conveniently be exponentiated, or mul-
tiplied by a real constant and then exponentiated. For

example:

ex̂ = cosh(1) + sinh(1)x̂,
eαŷ = cosh(α) + sinh(α)ŷ,
eαt̂ = cos(α) + sin(α)t̂,
eαcxy = cos(α) + sin(α)x̂y,
eαdxyt = cosh(α) + sinh(α)x̂yt,
eαdxyzt = cos(α) + sin(α)x̂yzt,

(21)

where α is a real (or complex) constant. One obtains the
hyperbolics or regular trigonometric functions according
as the canonical basis element squares to +1 or −1, re-
spectively.

It is often useful to consider a dagger operation in a
Clifford algebra. This operator reverses all products and
takes complex conjugates of complex coefficients. For
example,

(αx̂)† = +α∗x̂, (αx̂y)† = −α∗x̂y,
(αx̂yz)† = −α∗x̂yz, (αx̂yzt)† = +α∗x̂yzt,

(22)
where α is a real or complex constant and ∗ denotes the
complex conjugate.

If one is considering a complex Clifford algebra, one
might choose the signature to be all positive as any neg-
ative signature elements, for example t̂, can be replaced
with −i times the positive signature element it̂. In such
case, one can see that the geometric squared magnitude
can be written as

|M |2G = 〈M†M〉0. (23)

That is, the † negates the portions of M that have neg-
ative signature so that the scalar part of the product is
the sum of the squares of magnitudes.

Standard quantum mechanics uses squared magnitudes
of spinors and we will need to compare these with the
Clifford algebra squared magnitudes. In order to reduce
confusion in the notation, we will write:

〈A|A〉 = ||A〉|2N×1 (24)

for the squared magnitude of a N × 1 spinor. Similarly,
for the squared magnitude of a N × N matrix we will
write:

N∑
j=1

N∑
k=1

|Mjk|2 = |M |2N×N . (25)

Every now and then, to avoid confusion, we will write | |2c
for the usual squared magnitude of a complex number.

We will frequently have cause to swap the order of
two elements. In the usual quantum mechanics this is
done by commutation or anticommutation relations. One
can always move a simple canonical basis element such
as x̂, x̂yz or îxyzt, from one side of an element of a
Clifford algebra to the other side of the element. This is
always possible because any two canonical basis elements
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either commute or anticommute. The result is that the
arbitrary element has some of its signs complemented.
Some examples:

(1 + x̂+ ŷ + x̂y)x̂yz = x̂yz(1 + x̂+ ŷ + x̂y)
(1− 2x̂+ 3x̂t− 4ŷzt)x̂ = x̂(1− 2x̂− 3x̂t+ 4ŷzt)

(1 + x̂+ ŷ + x̂y)x̂yz = x̂yz(1 + x̂+ ŷ + x̂y)
(cosh(α) + sinh(α)x̂)ŷ = eαx̂ŷ = ŷe−αx̂

(cos(α) + sin(α)x̂y)x̂t = eαcxyx̂t = x̂te−αcxy

(26)

The first of the above follows from the fact that x̂yz acts
as an imaginary unit (commuting root of −1) in the Pauli
algebra. The last few show the peculiar utility of this sort
of operation on exponential functions.

IV. THE SCHWINGER MEASUREMENT
ALGEBRA

Let a1 be an elementary particle among some set of
elementary particles F . Let M(a1) symbolize the selec-
tive measurement that accepts particles of type a1, and
rejects all others. One can imagine some sort of Stern-
Gerlach apparatus with all particles but one type being
sent to a beam dump. In practice, such an apparatus
may be impossible to build, for example, if we chose as
an elementary particle the right handed electron. We can
define the “addition” of measurements to be the less se-
lective measurement that accepts particles of any of the
included types:

M(a1) +M(a2) +M(a3) = M(a1 + a2 + a3). (27)

The “multiplication” of two measurements can represent
the successive application of the two measurements. Be-
cause of the physical interpretations of the symbols, addi-
tion is associative and commutative, while multiplication
is at least associative. One and zero represent the trivial
measurements that accept all or no particles.

Clearly, 0 + M(a1) = M(a1), 1M(a1) = M(a1)1 =
M(a1), and 0M(a1) = M(a1)0 = 0, so the set of mea-
surements form an algebra. The “elementary” measure-
ments associated with a complete set of fermions satisfy
the following equations:

M(a1)M(a1) = M(a1), (28)

M(a1)M(a2) = 0, a1 6= a2, (29)

∑
χ

M(aχ) = 1 (30)

The elementary measurements that Schwinger refers
to are measurements that cannot be written as a sum
of (nontrivial) measurements. The corresponding con-
cept in mathematics is “primitive” idempotents. These
are idempotents that cannot be written as the sum of

(nontrivial) idempotents. Our use of the Schwinger mea-
surement algebra will be in its method of defining the
elementary particles according to the spectrum of prim-
itive idempotents of Clifford algebras.

In the density matrix formalism, a “pure” density ma-
trix is one that satisfies Eq. (28) and is idempotent.
There are advantages to using a density matrix approach
to the formalism of quantum mechanics. Brown and Hi-
ley write:

In the usual approach to quantum mechan-
ics, the density operator is, unfortunately, not
introduced as a primitive notion in the the-
ory. Rather, it is introduced almost as an
after-thought when it is found necessary to
deal with mixed states. But using the density
operator as a starting point has the advan-
tage of including both pure states and mixed
states together and of satisfying the idempo-
tent condition ρ = ρ2.[1]

In fact, the SMA and the density matrix formalisms
are compatible as we now show. Since we are treating
particles with different handedness as distinct particles,
we can compare the two algebras when the states are
distinct. Let ιA = |+ z〉〈+z| be the pure density matrix
representation of a fermion with spin +1/2 in the ẑ di-
rection and let ιB = |−z〉〈−z| be the oppositely directed
state. Then the product of these two density matrices is
zero:

ιA ιB = |+ z〉〈+z|| − z〉〈−z|,
= |+ z〉(〈+z| − z〉)〈−z| = 0. (31)

This is identical to the Schwinger measurement algebra
rule Eq. (29). In addition, the sums over primitive ele-
ments of each algebra are unity, for example:

|+ z〉〈+z|+ | − z〉〈−z| = (1, 0)†(1, 0) + (0, 1)†(0, 1)

=
(

1 0
0 1

)
(32)

Thus the Schwinger measurement algebra is a general-
ization of the density matrix representation, in that it
allows the inclusion of arbitrarily distinct particles.

V. GENERAL MEASUREMENTS AND
ORIENTATION

In addition to the measurement symbols defined in
the previous section, Schwinger defines “general mea-
surement symbols” that model a measurement where
the measurement modifies the particle. For an incom-
ing state of b′ and an outgoing state of a′, he writes
M(a′, b′). These general measurements can be chained
together. For example:

M(a′, d′) = M(a′, b′)M(b′, c′)M(c′, d′) (33)
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We will not be using these measurements because they
produce an unphysical degree of freedom (or gauge) as
we will now show in this section.

Consider the product of two measurement’s of
Schwinger’s general type:

M(a, b)M(c, d) = 〈b|c〉M(a, d). (34)

As long we assume that 〈b|c〉 is a complex number, it
makes mathematical sense to factor the general measure-
ments. For example, if we factorM(a, b) andM(c, d) into
bras and kets:

M(a, b) = |a〉〈b|, M(c, d) = |c〉〈d|, (35)

then Eq. (34) follows as a result of the fact that the com-
plex number 〈b||c〉 commutes with |a〉.

Schwinger’s justification for assuming complex num-
bers in the SMA is given by two passages, the first of
which is as follows:

The examples of compound measurements
that we have already considered involve the
passage of all systems or no systems between
the two stages, as represented by the multi-
plicative numbers 1 and 0. More generally,
measurements of properties B, performed on
a system in a state c′ that refers to properties
incompatible with B, will yield a statistical
distribution of possible values. Hence, only a
determinate fraction of the systems emerging
from the first stage will be accepted by the
second stage. We express this by the general
multiplication law

(1.14) M(a′, b′)M(c′, d′) = 〈b′|c′〉M(a′, d′),

where 〈b′|c′〉 is a number characterizing the
statistical relation between the states b′ and
c′. In particular,

(1.15) 〈a′|a′′〉 = δ(a′, a′′).[5]

Of course probabilities are given by P = |〈b′|c′〉|2. The
second half of Schwinger’s argument for complex num-
bers2 is the following (in which I replace symbols of the
form M(a) with M(a, a) for clarity):

1.6 STATISTICAL INTERPRETATION

It should be observed that the general multi-
plication law and the definition of the trace
are preserved if we make the substitutions

1.34) M(a′, b′) → λ(a′)−1 M(a′, b′) λ(b′)

〈a′|b′〉 → λ(a′)〈a′|b′〉λ(b′)−1,

2 In 1997, L. P. Horwitz[10] showed that the complex numbers in
the SMA could be replaced by quaternions.

where the numbers λ(a′) and λ(b′) can be
given arbitrary non-zero values. The elemen-
tary measurement symbols M(a′) and the
transformation function 〈a′|a′′〉 are left unal-
tered. In view of this arbitrariness, a transfor-
mation function 〈a′|b′〉 cannot, of itself, pos-
sess a direct physical interpretation but must
enter in some combination that remains in-
variant under the substitution (1.34).

The appropriate basis for the statistical
interpretation of the transformation func-
tion can be inferred by a consideration
of the sequence of selective measurements
M(b′, b′)M(a′, a′)M(b′, b′), which differs from
M(b′, b′) in virtue of the disturbance atten-
dant upon the intermediate A-measurement.
Only a fraction of the systems selected in the
initialB-measurement is transmitted through
the complete apparatus. Correspondingly, we
have the symbolic equation

(1.35) M(b′, b′)M(a′, a′)M(b′, b′) =
p(a′, b′)M(b′, b′),

where the number

(1.36) p(a′, b′) = 〈a′|b′〉〈b′|a′〉
is invariant under the transformation (1.34).
If we perform an A-measurement that does
not distinguish between two (or more) states,
there is a related additivity of the numbers
p(a′, b′),

(1.37) M(b′, b′) (M(a′, a′) +M(a′′, a′′))M(b′, b′)

= (p(a′, b′) + p(a′′, b′))M(b′, b′),

and, for the A-measurement that does not
distinguish among any of the states, there ap-
pears

(1.38)M(b′, b′) (
∑

a′ M(a′, a′))M(b′, b′) =
M(b′, b′),

whence

(1.39)
∑

a′ p(a′, b′) = 1 .

These properties qualify p(a′, b′) for the role
of the probability that one observes the state
a′ in a measurement performed on a system
known to be in the state b′. But a probabil-
ity is a real, non-negative number. Hence we
shall impose an admissible restriction on the
numbers appearing in the measurement alge-
bra, by requiring that 〈a′|b′〉 and 〈b′|a′〉 form
a pair of complex conjugate numbers

(1.40) 〈b′|a′〉 = 〈a′|b′〉∗ ,

for then

(1.41) p(a′, b′) = |〈a′|b′〉|2 ≥ 0 .

To maintain the complex conjugate relation
(1.40), the numbers λ(a′) of (1.34) must obey

(1.42) λ(a′)∗ = λ(a′)−1 ,
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and therefore have the form

(1.43) λ(a′) = eiφ(a′)

in which the phases φ(a′) can assume arbi-
trary real values.[5]

The above argument has difficulty upon extending it to
situations with more than one intervening measurement.
In fact, just such situations is the topic of much of this
paper. In such a situation, following Schwinger’s nota-
tion, one would replace p(a′, b′) with p(a′, c′, b′) defined
as:

M(b′, b′)M(a′, a′)M(c′, c′)M(b′, b′)
= p(a′, c′, b′)M(b′, b′). (36)

From the example of spin−1/2 in the x, y and z direc-
tions, M(b′, b′) = (1+σz)/2, M(a′, a′) = (1+σx)/2, and
M(c′, c′) = (1 + σy)/2, we know that, p(a′, c′, b′) cannot
in general be a real number, but instead must be com-
plex. In this case, we know that the correct probability
that must be associated with the four consecutive mea-
surements is not p(a′, c′, b′), but instead is |p(a′, c′, b′)|.

There are two effects going on here. First, the incom-
patibility of the sequence of internal measurements de-
creases the probability of a particle making it through
the sequence of measurements. Second, the sequence
changes the phase of the particle. We can attempt to
split these two effects by using Schwinger’s general mea-
surements, i.e. measurements of form M(a′, b′), but by
so doing we run into a difficulty. The underlying problem
is that the measurements of the form M(a′, b′) change a
particle from one sort to another without specifying any
sort of phase change.

For example, let us naively suppose that

M(a′, a′)M(b′, b′) =
√
p(a′, b′) M(a′, b′), (37)

and that p(a′, b′) = p(b′, a′). Then

M(b′, b′)M(a′, a′)M(b′, b′)
= M(b′, b′)M(a′, a′)M(a′, a′)M(b′, b′)
=

√
p(a′, b′)M(b′, a′)

√
p(b′, a′)M(a′, b′)

= p(a′, b′)M(b′, a′)M(a′, b′)
= p(a′, b′)M(b′, b′),

(38)

and Schwinger’s equation (1.35) is satisfied. However,
such a substitution would give

M(b′, b′)M(a′, a′)M(c′, c′)M(b′, b′)
= M(b′, b′)M(a′, a′) M(a′, a′)M(c′, c′) M(c′, c′)M(b′, b′)
=

√
p(b′, a′)

√
p(a′, c′)

√
p(c′, b′) M(b′, a′) M(a′, c′) M(c′, b′)

=
√
p(b′, a′)

√
p(a′, c′)

√
p(c′, b′) M(b′, b′).

(39)
This gives the correct amplitude for p(a′, c′, b′), but its
phase is always zero which is incorrect.

So if we are to write M(a′, b′) as a multiple of
M(a′, a′)M(b′, b′) we have to adjust our substitution to
something of the form

√
p(a′, b′)e+iθ(a′,b′) M(a′, b′) =

M(a′, a′)M(b′, b′) with p(a′, b′) = p(b′, a′) and θ(a′, b′) =
−θ(b′, a′). Using this in the calculation of Eq. (39) gives:

M(b′, b′)M(a′, a′)M(c′, c′)M(b′, b′)
= ei(θ(b′,a′)+iθ(a′,c′)+iθ(c′,b′))p(a′, c′, b′)M(b′, b′).

(40)

For the example of the Pauli algebra, the desired phase is
half the area of the spherical triangle defined by the three
vectors a′, b′ and c′. A solution can therefore be obtained
by choosing a an arbitrary unit vector, for example z =
(0, 0, 1) and defining θ as

θ(a′, b′) = S(a′, b′, z)/2 (41)

where S is the (oriented) area of the spherical triangle
defined by the given unit vectors.3

The definition of θ given by Eq. (41) is unsatisfactory
in that it amounts to choosing a preferred orientation,
(0, 0, 1). It is easily seen that there are no symmetrical
solutions to the problem of defining θ. Since we would
prefer to keep our mathematics as symmetric as possible,
we therefore avoid the use of Schwinger’s general mea-
surement symbols M(a′, b′) as their definition in terms
of products of the measurement symbols M(a′) requires
an unphysical selection of a preferred orientation.

In Schwinger’s measurement algebra, the connection
to the annihilation and creation operators of the usual
quantum field theory is obtained by introducing a “ficti-
tious” null, or vacuum state 0 as one of the states in the
more general measurement M(a, b). From his book:

The uncontrollable disturbance attendant
upon a measurement implies that the act of
measurement is indivisible. That is to say,
any attempt to trace the history of a system
during a measurement process usually traces
the nature of the measurement that is being
performed. Hence, to conceive of a given se-
lective measurement M(a′, b′) as a compound
measurement is without physical implication.
It is only of significance that the first stage
selects systems in the state b′, and that the
last one produces them in the state a′; the in-
terposed states are without meaning for the
measurement as a whole. Indeed, we can even
invent a non-physical state to serve as the in-
termediary. We shall call this mental con-
struct the null state 0, and write

(2.1) M(a′, b′) = M(a′, 0)M(0, b′).

The measurement that selects a system in the
state b′ and produces it in the null state,4

(2.2) M(0, b′) = ψ(b′),

3 This fact is proven below.
4 Schwinger writes his annihilation and creation operators as Φ(b′)

and Ψ(a′). In the interest of conforming to modern practice, I’ve
replaced these with ψ(b′) and ψ†(a′), respectively.
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can be described as the annihilation of a sys-
tem in the state b′; and the production of a
system in the state a′ following its selection
from the null state,

(2.3) (a′, 0) = ψ†(a′),

can be characterized as the creation of a sys-
tem in the state a′. Thus the content of
(2.1) is the indiscernibility of M(a′, b′) from
the compound process of the annihilation of a
system in the state b′ followed by the creation
of a system in the state a′,

(2.4) M(a′, b′) = ψ†(a′)ψ(b′) [5]

When Schwinger reprinted the above referenced book
in 1991, he wrote a special preface with the comment:
“Instead of the symbol of measurement: M(a′, b′), I now
write |a′b′|, combining reference to what is selected and
what is produced, with an indication that the act of
measurement has a beginning and an end. Then, with
the conceptual analysis of |a′b′| into two stages, one
of annihilation and one of creation, as symbolized by
|a′b′| = |a′〉〈b′|, the fictitious null state, and the sym-
bols Ψ and Φ can be discarded.” At that time, the use
of spontaneous symmetry breaking of the vacuum was
already well established for the standard model. One
wonders what he thought of it.

In avoiding Schwinger’s general measurement symbols
we also must avoid the vacuum. But in so doing, we
obtain relief from the otherwise unavoidable unphysical
gauge freedoms. Analogously, a similar problem in the
Dirac equation disappears when it is converted to density
matrix form, see Section II.

VI. SPINORS, SQUARE AND GEOMETRIC

In rejecting Schwinger’s general measurement symbols,
we also must reject Schwinger’s use of complex numbers.
This presents difficulties in providing a probability in-
terpretation to our algebra. In moving from the usual
probability interpretation of spinors to a new method of
deriving probabilities in an entirely geometric way (that
has no unphysical degrees of freedom), it will be useful
to use the concept of “square spinors”–which we review
in this section.

We will use the example of Dirac spinors. The Dirac
equation has operators typically consisting of 4 × 4 ma-
trices, and states consisting of 4× 1 vectors. Writing the
equation with the dimensions of the objects explicitly in-
cluded as a suffix:

(γµ∂µ)4×4 ψ4×1 = mψ4×1. (42)

By the laws of matrix multiplication, we can replace the
ψ4×1 vector with a 4 × 4 matrix. We simply put the
vector into one of the columns of the matrix and keep

the other columns zero. For example, the vector:

ψ4×1 =

 α1

α2

α3

α4

 , (43)

can be replaced by the matrix:

ψ4×1 =

 0 α1 0 0
0 α2 0 0
0 α3 0 0
0 α4 0 0

 , (44)

giving a matrix Dirac equation in every way the same as
the vector equation:

(γµ∂µ)4×4 ψ4×4 = mψ4×4, (45)

except that it now has three columns of unneeded zeros.

An obvious interpretation of the extra three columns
is that they correspond to distinct particles. This pro-
vides a natural explanation for how nature arranges to
share the same propagator among several different (and
therefore non interfering ) particles such as electrons and
quarks. The 4 × 4 matrices of CL(4, 1) are big enough
to fit, for example, the electron and the three colors of
up quark only. This is just half the number of degrees
of freedom required for a single generation of elementary
fermions. Greg Trayling puts the 8 elementary fermi-
ons of a single generation into the eight columns[4, Table
2.] [11] of the real 8 × 8 matrices representing CL(7, 0),
assuming 4 hidden spatial dimensions.

The complex 4 × 4 matrices can be written as a
real vector space over products of the gamma matrices
{γ0, γ1, γ2, γ3, γ4} ≡ {t̂, x̂, ŷ, ẑ, ŝ} and this gives a com-
pletely real geometric interpretation of any 4×4 complex
matrix. Similarly, the complex 2×2 matrices can be writ-
ten as a real vector space over products of Pauli matrices
{σx, σy, σz} ≡ {x̂, ŷ, ẑ}. The interpretation depends on
the choice of representation. So using square spinors can
give us a geometric interpretation of both our operators
and our states.

The geometric interpretation is important and we will
illustrate it using the Weyl (or chiral) representation of
the Dirac matrices.[12, §3.2] For brevity, we will work
in the more usual complex representation of 3,∞ rather
than the real representation of 4,∞. The basis set for
the 4× 4 complex matrices is given by the various prod-
ucts of x̂, ŷ, ẑ and t̂. Using îy instead of ŷ puts the ma-
trices into real values which will be convenient. Written
with the matrix representation under the corresponding
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geometric form, the sixteen products are:

1̂ îxy ẑt îxyzt∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∣∣∣∣∣∣∣
ŷzt x̂ îy x̂zt∣∣∣∣∣∣∣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

∣∣∣∣∣∣∣
ît ẑ îxyt îxyz∣∣∣∣∣∣∣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣
îyz x̂z îyt x̂t∣∣∣∣∣∣∣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

∣∣∣∣∣∣∣

.

(46)
The above 16 basis elements are organized in four rows
with each row sharing the same four nonzero matrix ele-
ments. For example, îyz, x̂z, îyt and x̂t correspond to the
only matrices that are nonzero in positions (1, 2), (2, 1),
(3, 4) and (4, 3). Thus it is easy to invert the basis and to
write an arbitrary complex 4× 4 matrix A, in geometric
form:

α(A) = α11̂ + αxx̂+ ...+ αxyztx̂yzt. (47)

Reading off the 16 basis matrices, we have:

α1 = (A11 +A22 +A33 +A44)/4
αxy = (A11 −A22 +A33 −A44)/4i
αzt = (A11 −A22 −A33 +A44)/4

αxyzt = (A11 +A22 −A33 −A44)/4i
αyzt = (A14 +A23 +A32 +A41)/4i
αx = (A14 +A23 −A32 −A41)/4
αiy = (A14 −A23 −A32 +A41)/4i
αxzt = (A14 −A23 +A32 −A41)/4
αt = (A13 +A24 +A31 +A42)/4
αz = (A13 −A24 −A31 +A42)/4

αxyt = (A13 −A24 +A31 −A42)/4i
αxyzt = (A13 +A24 −A31 −A42)/4i
αyz = (A12 +A21 +A34 +A43)/4i
αxz = (A12 −A21 +A34 −A43)/4
αyt = (A12 −A21 −A34 +A43)/4i
αxt = (A12 +A21 −A34 −A43)/4

(48)

If one multiplies the first four of the above equations
by their complex conjugates and adds, one discovers that
the cross terms cancel and:

|α1|2 + |αxy|2 + |αzt|2 + |αxyzt|2
= (|A11|2 + |A22|2 + |A33|2 + |A44|2)/4.

(49)

A similar coincidence applies to the remaining 12 equa-
tions. Thus we have that the geometric squared magni-
tude of Eq. (20) is related to the matrix squared magni-
tude. That is,

4|α(A)|2 = |A|24×4 =
∑

j

∑
k

|Ajk|2. (50)

This is not generally true, but depends on the represen-
tation, as we will discuss in the next section.

Eq. (48) gives the conversion for taking a complex 4×4
matrix A to the complex Clifford algebra CL(3, 1). To
convert to the real Clifford algebra CL(4, 1) one uses i =
x̂yzst and expands each line into a real and complex part.
The first few conversions give:

α1 = +R(A11 +A22 +A33 +A44)/4
αxyzst = +I(A11 +A22 +A33 +A44)/4
αzst = −R(A11 −A22 +A33 −A44)/4
αxy = +I(A11 −A22 +A33 −A44)/4
αzt = +R(A11 −A22 −A33 +A44)/4
αxys = −I(A11 −A22 −A33 +A44)/4
αs = +R(A11 +A22 −A33 −A44)/4

αxyzt = +I(A11 +A22 −A33 −A44)/4
...

(51)

Given an N ×N matrix representation of a Clifford al-
gebra, a set of important matrices are the diagonal prim-
itive idempotents. These are matrices that are zero but
for a single one on the diagonal. For the Pauli algebra,
the two diagonal primitive idempotents are:

ι± =
1± σz

2
. (52)

The four diagonal primitive idempotents of the Weyl rep-
resentation of the Dirac algebra are:

ι±± =
1± îxy

2
1± ẑt

2
. (53)

where the ± are to be taken independently.
Another important matrix in a representation is the

“democratic” matrix which has all elements equal to
1/N :

DN×N =
1
N

 1 1
1 1

...

 . (54)

Note that the democratic matrix is a primitive idempo-
tent. For the example of the Pauli spin matrices,

D2×2 ≡ (1̂ + σx)/2. (55)

For the Dirac matrices in the Weyl representation,

D4×4 ≡ (1̂− ŷzt+ ît+ îyz)/4
≡ (1 + ît)(1 + îyz)/4.

(56)
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The N diagonal primitive idempotents, together with the
democratic matrix, fully determine the representation.
In fact, the product

Bjk = ιj DN×N ιk (57)

is the matrix with 1 in position (j, k) and all other matrix
positions zero.

VII. PROBABILITIES AND THE SMA

The logic behind Schwinger’s statistical interpretation
of the measurement symbols requires factoring into bras
and kets. Having rejected this, his statistical interpre-
tation also becomes suspect. Since the elements of the
SMA are all Stern-Gerlach filters, our only need for prob-
abilities arises in the intensities of beams. For this, we
need a probability that is proportional to the square of
the amplitude of the beam. In this section we derive a
probability interpretation based on the Clifford algebraic
squared magnitude defined in Eq. (20). Thus instead of
using traces to extract real numbers from operators, we
will be using the squared magnitude typically used to
extract probabilities from spinors, but at the same time,
instead of using spinors to represent states, we will use
operators.

In the spinor representation of QM, there is a conflict
between normalization and linearity.5 The linear combi-
nation of two normalized spinor wave functions is gen-
erally not a normalized spinor wave function. Requir-
ing the spinor theory to be closed under linear combi-
nations therefore requires that we include normalization
factors in our calculations. For example, when computing
a probability of a transition between two unnormalized
spinor states A and B we could use:

PAB =
〈A|B〉〈B|A〉
〈A|A〉〈B|B〉

. (58)

On the other hand, if we give up the notion of linearity
and arrange for our spinor wave functions to be normal-
ized, then we can calculate probabilities in a simpler way:

PAB = 〈A|B〉〈B|A〉. (59)

With density matrices, we have no easy way to retain a
form of linearity, so there is no reason to sacrifice normal-
ity for linearity. In addition, idempotent normalization is
unique; they do not possess the arbitrary complex phases
that spinors do.

5 In contrast to classical E&M, quantum mechanics, even in the
usual spinor formalism, is not physically linear. Three times a
spinor wave function is a wave function that corresponds to the
same physical situation (with the normalization changed), not a
physical situation with three times as many particles or particles
that are three times stronger.

Since we are assuming that the elementary particles
each has its own primitive measurement, it’s natural to
represent the elementary particles with those measure-
ments. Unfortunately, this is too restrictive because we
can produce measurements that are different from the el-
ementary ones but that nevertheless, correspond to phys-
ical experiments that pass only the given particles.

For example, consider a sequence of four Stern-Gerlach
filters oriented in the z, y, x and z direction, M(zyxz).
Since the beginning and ending filters are both oriented in
the z direction, this will be equivalent to a single Stern-
Gerlach filter oriented in the z direction, but with an
amplitude of

√
1/8 and a phase change of π/4. The

amplitude gives a probability of 1/8, as we expect from
forcing the particle through three consecutive completely
incompatible spin−1/2 measurements. The compound
measurement is represented in the SMA by:

M(zyxz) = (1 + ẑ)(1 + x̂)(1 + ŷ)(1 + ẑ)/16 or
16M(zyxz) = (1 + ẑ + x̂+ ŷ + ẑ + ẑẑ + x̂ŷ

+ẑx̂ŷ + ẑx̂ẑ + ẑŷẑ + x̂ŷẑ + ẑx̂ŷẑ
= 2 + 2ẑ + x̂+ ŷ + 2x̂ŷ − x̂− ŷ + 2x̂ŷẑ
= 2(1 + ẑ)(1 + x̂ŷẑ) so
M(zyxz) = M(z)(1 + x̂yz)/4
= 1√

8
e

π
4dxyz M(z).

(60)

Thus the difference between M(z) and M(zyxz) is that
the amplitude is smaller by a factor of 8 and, there has
been a geometric phase shift of π/4 x̂yz. In CL(3, 0),
x̂yz is a geometric imaginary unit, so for this Clifford
algebra we could treat the π/4 as a complex phase, but
this does not hold true for arbitrary Clifford algebras. For
example, CL(3, 1) doesn’t possess a geometric imaginary
unit. So, in general, a given elementary particle will have
to be represented by a set of distinct Clifford algebraic
numbers.

Physically, the phase need not concern us if we have
another method of obtaining the probability. And the
Clifford algebra can take care of the phases by itself. So
we need not use complex numbers if we can obtain the
probabilities direct from the Clifford algebra. Accord-
ingly, let us reexamine M(zyxz):

M(zyxz) = M(z)(1 + x̂yz)/4
= (1 + ẑ + x̂yz + x̂y)/8, so

|M(zyxz)|2G = 4/64 = 1/16.
(61)

On the other hand,

|M(z)|2G = |(1 + ẑ)/2|2 = 1/4 + 1/4 = 1/2, (62)

so we see that the square of the beam amplitude, or
probability, is given by P (zyxz) = |M(zyxz)|2G/|M(z)|2G.
This suggests that we assume that probabilities are pro-
portional to squared magnitudes. That |M(z)|2G = 1/2
we can interpret as the fact that just half of an unpo-
larized beam of spin−1/2 particles will survive a single
Stern-Gerlach filter.

As a test, let us consider a sequence of two Stern-
Gerlach filters oriented with the first one in the v di-
rection and the second in the u direction. We know that
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the beam amplitude will be reduced by the square root
of P (u, v) = (1 + cos(θ))/2 where θ is the angle between
u and v:

|M(uv)|2G = |(1 + û)/2 (1 + v̂)/2)|2G
= |1 + û+ v̂ + ûv̂|2G /16
= |1 + uxvx + uyvy + uzvz + (ux + vx)x̂+ (uy + vy)ŷ
+(uz + vz)ẑ + (uxvy − uyvx)x̂y
+(uxvz − uzvx)x̂z + (uyvz − uzvy)ŷz|2G /16

= ((1 + u · v)2 + 2 + 2u · v + |u× v|2)/16
= (1 + 2 cos(θ) + cos2(θ) + 2 + 2 cos(θ) + sin2(θ))/16
= (4 + 4 cos(θ))/16 = (1 + cos(θ))/4.

(63)
Thus |M(uv)|2G/|M(u)|2G gives the correct probability in
this case as well.

More generally, let ψ be a normalized N ×1 spinor (so
that (ψψ†)2 = ψψ†), and M be an N ×N matrix (over
the complex numbers) that defines a series of operations
(i.e. a complicated filter) to be performed on the state ψ.
Then the probability of a particle surviving the sequence
of filters is given by:

P (M,ψ) = |Mψ|2N×1 ,
= ψ†M†Mψ,
= tr(Mψψ†M†),
= tr(Mψψ†ψψ†M†),
= tr(

∑
n |n〉〈n|Mψψ†

∑
m |m〉〈m|ψψ†M†),

(64)

where |m〉 is the spinor with a 1 in its mth position and
the rest zero. Continuing:

P (M,ψ) =
∑

m

∑
n tr(|n〉〈n|Mψψ†|m〉〈m|ψψ†M†),

=
∑

m

∑
n tr(〈n|Mψψ†|m〉〈m|ψψ†M†|n〉),

=
∑

m

∑
n(〈n|Mψψ†|m〉)(〈m|ψψ†M†|n〉),

=
∑

m

∑
n

∣∣〈n|Mψψ†|m〉
∣∣2
c
,

= |Mψψ†|2N×N ,
(65)

and we have that the probability of ψ surviving the fil-
ter M is given by the squared magnitude of the product
of the matrix M with the density matrix of ψ. For a
generalization of this principle, see [13].

Thus the usual probability formula for density matrices
tr(Mρ), gives the same predictions as the squared matrix
magnitude |Mρ|2N×N . It remains to relate these values
with the natural squared magnitude of a Clifford alge-
bra. Reviewing the derivation of Eq. (50), we see that
the relationship will be determined by how the matrix
elements are defined in terms of the geometry.

As noted in the previous section, the N diagonal prim-
itive idempotents, together with the democratic matrix,
fully determine the relationship between the matrix rep-
resentation and the Clifford algebra. In matrix form,
these N +1 elements are particularly simple, and as seen
in Eq. (57) they provide a natural way of computing
| |2N×N in geometric form. But the number of ways
that this can be done depends on how these N + 1 prim-
itive idempotents can be chosen and to understand that,
we need to know a little about how primitive idempotents
appear in a Clifford algebra.

The subject of the primitive idempotents of a Clifford
algebra are complicated with the appearance of Radon-
Hurwitz numbers[6, §17.5] but we need not understand
the subject to this depth. Instead, let us take as an exam-
ple a Clifford algebra that has two non trivial commuting
square roots of unity. Such an algebra would physically
correspond to a finite quantum system with two inde-
pendent quantum numbers (such as the spin and particle
type of the Dirac algebra).

Let e1 and e2 be commuting non scalar roots of unity.
That is,

(e1)2 = 1, (e2)2 = 1, e1e2 = e2e1, (66)

and suppose that there are no other non scalar roots of
unity. Then it turns out that the 22 = 4 elements of the
algebra defined by taking independently the signs in

ι±± =
1± e1

2
1± e2

2
(67)

are a mutually annihilating complete set of primitive
idempotents. That is, the four elements are each prim-
itive idempotents, they sum to 1, the products of two
different of them are zero, and none of them can be writ-
ten as a nontrivial sum of two idempotents. Any pro-
jection operator can be written as a (possibly trivial)
sum of elements of some such set of primitive idempo-
tents. For the Weyl representation of the Dirac equation
given by Eq. (46), the diagonal primitive idempotents
are defined geometrically by Eq. (67) with e1 = îxy and
e2 = ẑt as is most easily seen by comparing Eq. (53) to
the above, while the democratic primitive idempotent is
obtained with commuting roots of unity given by d1 = ît,
d2 = îyz. Note that these two sets of commuting roots
of unity share no common elements.

Given a representation of a Clifford algebra, we can
always extract the eχ and dχ sets of commuting roots
of unity. The reverse problem, how to choose two com-
muting sets of unity is more difficult. We now illustrate
how this can be done by looking at the Dirac algebra.
The Clifford algebra element that gives the democratic
primitive idempotent is:

ιD =
1 + d1

2
1 + d2

2
. (68)

The four diagonal primitive idempotents are:

ι1 = 1−e1
2

1−e2
2 ,

ι2 = 1+e1
2

1−e2
2 ,

ι3 = 1−e1
2

1+e2
2 ,

ι4 = 1+e1
2

1+e2
2 .

(69)

And the matrix of zeroes except for a one at position
(j, k) is given by:

Mjk = Nιj ιD ιk, (70)

where N = 2n = 4. To have this set of matrices be a
representation of the Clifford algebra, we need to have

MjkMlm = δl
k Mjm (71)
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map faithfully into the Clifford algebra:

N2(ιj ιD ιk) (ιl ιD ιm) = δl
k N(ιj ιD ιm). (72)

The fact that ιk ιl = δl
kιk shows that this is equivalent

to requiring:

N2ιj ιD ιk ιD ιm = Nιj ιD ιm. (73)

Writing 1 =
∑

j ιj =
∑

m ιm shows that the above is
equivalent to:

NιD ιk ιD = ιD. (74)

Since
∑N

k=1 ιk = 1, the above equation is automatically
true in average. But it also shows that we can’t choose
the dχ equal to the eχ as that would result in either 0
or NιD on the left hand side. But no matter how ιk is
chosen, the two sides of the above equation must be at
least proportional if not equal as both sides act identically
as a multiple of the primitive projection operator ιD.

We can therefore take the trace to determine if the
constant of proportionality in Eq. (74) is correct:

tr(NιD ιk ιD) = Ntr(ιD ιD ιk)
= Ntr(ιD ιk). (75)

We expect that this is equal to tr(ιD) = 1/N because
the only compatible degrees of freedom between ιD and
ιk is presumed to be the scalar, and both these primitive
idempotents have scalar part equal to 1/N . However,
there is a detail that needs to be mentioned.

Counting up the number of degrees of freedom, we see
that the number of distinct matrices Mjk is apparently
N2 = 4n, and in order for this to be equal to the number
of degrees of freedom in the Clifford algebra CL(p, g),
we would have to have that p + q = 2n. In the event
p+ q is odd, we will be unable to choose the two sets of
roots of unity to be completely incompatible. The result
will be that part of the matrix elements will be always
annihilated and that will reduce the true degrees of free-
dom of the representation to match the Clifford algebra.
Alternatively, we can bump up the Clifford algebra to
CL(p+1, q) and then ignore the extra degrees of freedom
in both the Clifford algebra and the matrices.

From the point of view of quantum mechanics, the ιχ
can represent Stern-Gerlach filters and Eq. (74) is equiv-
alent to requiring that the observables corresponding to
eχ be completely incompatible with the observables cor-
responding to dχ. Spin−1/2 in the x and z directions are
completely incompatible:

x̂ẑ = −ẑx̂, (76)

and so in the case of the Pauli matrices the representation
can be defined by e1 = ẑ and d1 = x̂. More generally,
since the eχ form a complete set, it is not possible to
choose a dχ that commutes with all of them and yet is
not included in their degrees of freedom.

This presentation has drifted towards the theoretical so
a practical application is in order. Let’s write down all

the Weyl representations of the Dirac algebra. That is,
let’s write down the representations that have the îxy and
ẑt operators diagonal, and so e1 = îxy and e2 = ẑt. How
much freedom remains in the choice of the democratic
primitive idempotent? The degrees of freedom that are
covered by eχ consists of the Abelian group with four
elements given by the possible products of eχ:

1̂, îxy, ẑt, îxyzt. (77)

The remaining degrees of freedom (written as square
roots of +1 rather than ±1) are:

1̂ x̂ ŷ ẑ

ît îxz x̂t îyz

ŷt îxyz x̂yt ŷzt

(78)

To choose the democratic primitive idempotent, we need
to find the Abelian subgroups of the above. By inspec-
tion:

{1̂, x̂, îyz,+îxyz},
{1̂, x̂, ŷt,+x̂yt},
{1̂, ŷ, îxz,−îxyz},
{1̂, ŷ, x̂t,−x̂yt},
{1̂, ẑ, x̂t,−x̂zt},
{1̂, ẑ, ŷt,−ŷzt},
{1̂, ît, îxz,−x̂zt},
{1̂, ît, îyz,−ŷzt}

(79)

For each of the eight distinct maximal Abelian subgroups,
there are 6 choices for d1. For example, in the first
case, one could use ±x̂, ±îyz or ±îxyz. Having cho-
sen d1, there are then 4 choices for d2 giving a total of
24 selections for that subgroup. But the ordering of the
choices makes them double counted. Thus the total num-
ber of choices for the democratic primitive idempotent is
12× 8 = 96. The Weyl representation used in this paper
uses elements chosen from the last of the above Abelian
subgroups.

We now complete our demonstration that, with the
usual choices of representations, the geometric squared
magnitude |U |2G gives identical probability predictions
as the matrix squared magnitude |U |2N×N , which is well
known (and shown above) to have probabilities identical
to the usual spinor inner product. To do this, we will
follow the hint of Eq. (49) and examine the degrees of
freedom corresponding to a single term in ιD.

The way we’ve chosen our dχ implies that the vari-
ous terms in dχ correspond to independent degrees of
freedom even when multiplied by ιk. In computing the
geometric squared magnitude, the terms of ιD, when mul-
tiplied by ιj , will give stay in independent subspaces of
the Clifford algebra, so these terms break the Clifford al-
gebra into independent subspaces. This is not a general
feature of representations of a Clifford algebra, but it is
true, for example, of the 96 Weyl representations that we
just derived and it is true of all representations that are
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in common use in physics. In the example of the Weyl
representation used here, the 4 subspaces generated by
the terms of ιD are spanned by the four rows in Eq. (46).

Let λ̂ be a term in ιD. Following the “coincidence” of
Eq. (49) and Eq. (50), we first show that the subspace
ιj λ̂ gives independent degrees of freedom of the matrix
(i.e. distinct matrix elements) just as it gives a geometric
subspace of the Clifford algebra. Accordingly, consider
the matrix elements that arise from λ̂. These are just
the values of j and k that leave

ιj λ̂ ιk (80)

nonzero. To write ιj in terms of eχ, define jm to be +1
or −1 according as the binary number j − 1 as a 1 or 0
bit in its mth position. This gives:

ιj = (1 + j1e1)(1 + j2e2)...(1 + jnen)/N, (81)

with ιk similar and so the matrix elements that arise from
λ̂ are the values of j and k that leave

(1 + j1e1)(1 + j2e2)...(1 + jnen)/N λ̂ ιk. (82)

nonzero.
We can commute λ̂ around ιj if we complement the

signs of the eχ that anticommute with λ̂. Since the eχ

set of roots of unity is complete, λ̂ must anticommute
with at least one of the eχ. Let κj be ±1 depending on
whether λ̂ commutes (+1) or anticommutes (−1) with
ej . Then

(1 + j1e1)(1 + j2e2)...(1 + jnen)/N λ̂

= λ̂ (1 + κ1j1e1)(1 + κ2j2e2)...(1 + κnjnen)/N
(83)

Substituting this into Eq. (80) we see that the matrix
elements that arise from λ̂ are the values of j and k that
leave

λ̂ (1 + κ1j1e1)(1 + κ2j2e2)...(1 + κnjnen)/N ιk. (84)

nonzero. Since the ιj are self annihilating primitive idem-
potents, this will be zero unless κ1j1 = k1, κ2j2 = k2,
... κnjn = kn. Thus both the matrix squared magni-
tude and the geometric squared magnitude are compat-
ible with the subspaces defined by ιj multiples of the
terms of ιD. The N matrix elements that correspond to
λ̂ are Mjk where j and k are related by the restriction
that κmjm = km for m = 1 to n. This defines a set of N
equations in N unknowns that give the non zero matrix
elements in terms of the coefficients of the canonical ba-
sis element expansion. As in Eq. (48), these N equations
are easily solved to give the coefficients in terms of the
matrix elements. The resulting N equations are of the
form:

αχ(m) =
1
N

N∑
j=1

mjAjk, (85)

where mj are −1 or +1 according as the number m has
a binary expansion with 0 or 1 in its jth bit position.
Taking squared magnitudes on both sides and summing
over m, again the cross terms on the right cancel giving
the desired generalization of Eq. (49):∑N

m=1 |αχ(m)|2 = 1
N

∑N
j=1 |Ajk|2, (86)

from which we have that the geometric squared magni-
tude and the matrix squared magnitude are related by
N |α(A)|2G = |A|2N×N .

VIII. ALGEBRA OF PAULI FILTERS

In this section, we begin our exploration of the algebra
of projection operators with the simplest case, projection
operators chosen from the Pauli algebra.

Following the formalism of the SMA, we imagine send-
ing the output of one filter into the input of another.
Earlier in this paper, we needed a formula for the phase
associated with a product of three projection operators.
As with the Schwinger measurement algebra, this will be
modeled by multiplication, and we will make the calcu-
lation here. The effect of a Stern-Gerlach filter of the
type considered here is a projection operator, so our ob-
ject of study will be the overall projection defined by the
product of three projection operators:

P = P3 P2 P1, (87)

where P1 is applied first. We will use the usual Pauli
notation. In this notation, the spin operator in the ~u
direction is:

σu = ~u · ~σ = vxσx + vyσy + vzσz. (88)

The projection operator in the u direction is given by

Pu =
1
2
(1 + σu) =

1
2
(1 + ~u · ~σ). (89)

The fundamental multiplication rule for the spin oper-
ators of the Pauli algebra is:

σuσv = ~u · ~v + i(~u× ~v) · ~σ. (90)

The i of the Pauli representation can be more generally
replaced with the geometric pseudoscalar:

î = σx σy σz. (91)

In a more general algebra, this î may not commute with
all the elements of the algebra.

Our analysis will apply to sequences of any number
of Stern-Gerlach filters, but the full results will be clear
from considering just three. Accordingly, let ~w, ~v and ~u
be three unit vectors giving the spin direction of, respec-
tively, the first, second and third Stern-Gerlach filters.
The three projection operators are:

Pχu = 1
2 (1 + σu),

Pχv = 1
2 (1 + σv),

Pχw = 1
2 (1 + σw).

(92)
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With the full operator for the sequence of filters given
by the product. Since this product is not in general a
projection operator, we will refer to it as a filter, FSG:

FSG = Pu Pv Pw. (93)

In order to avoid a later division by zero, we will as-
sume that ~u and ~w are not antiparallel. That is, we will
assume that ~u · ~w > −1. Under this assumption, it can
be shown that there is a complex constant guvw that de-
pends on ~u, ~v and ~w and that satisfies:

PuPvPw = guvwPuPw (94)

The existence of this constant is equivalent to noting that
Stern-Gerlach filters obliterate all knowledge of previous
measurements. Since the Pv measurement is hidden from
the exterior of the sequence of filters by Pu and Pw, the
only effect it can contribute is a change in the amplitude
and phase.

The above reduction rule Eq. (94) allows us to reduce
almost any product of spin projection operators to a com-
plex constant multiplied by the leading and trailing op-
erators. For example:

PaPbPcPdPe = gabc(PaPc)PdPe

= gabcgacdgadePaPe
(95)

We may still be able to evaluate cases with antiparal-
lel operators if we can arrange to eliminate the middle
projection operators in an order that avoids having two
antiparallel operators adjacent.

A convenient way to evaluate guvw is with traces, but
we will instead use “blade” notation. Blades are vector
subspaces of a real Clifford algebra. The scalars of a real
Clifford algebra form the “0−blade”, which are written
<>0. The vectors form the “1−blade”. Bivectors form
the “2−blade”, etc. Given a real Clifford algebraic con-
stant, the n−blade (i.e. <>n) portion can be extracted
from it. If κ is a Clifford algebraic constant, it can be
written as a sum over its blade components so:

κ =
∑

n

< κ >n (96)

Let M be an arbitrary element of the real Pauli algebra:

M = a0 + axσx + ayσy + azσz

+aixσyσz + aiyσzσx + aizσxσy + aiσxσyσz,
(97)

where aχ are real constants. Then the four blades are:

< M >0 = a0

< M >1 = axσx + ayσy + azσz

< M >2 = aixσyσz + aiyσzσx + aizσxσy

< M >3 = aiσxσyσz.

(98)

Written in the canonical basis of the Clifford algebra
CL(3, 0), the four blades are:

< M >0 = a0

< M >1 = axx̂+ ay ŷ + az ẑ
< M >2 = aixŷz − aiyx̂z + aizx̂y
< M >3 = aix̂yz.

(99)

Since guvw is a complex valued function, it will be conve-
nient to use the complex Pauli algebra. There are then
two blades, which we will denote by [ ]n so that we can
switch between the real and complex representations of
SU(2):

[M ]0 =< M >0 +i < M >3= a0 + iai

[M ]1 =< M >1 +i < M >2 . (100)

When the Pauli algebra is represented in 2 × 2 complex
matrices, [M ]0 = tr(M)/2. For example,[(

a b
c d

)]
0

=
a+ d

2

(
1 0
0 1

)
. (101)

We can find γuvw by examining the complex scalar
portions of Eq. (94):

[PuPvPw]0 = guvw[PuPw]0. (102)

Using Eq. (90) and dividing by [PuPw]0 gives:

guvw =
1
2

+
~u+ ~w + i ~w × ~u

2(1 + ~u · ~w)
· ~v. (103)

Thus guvw, as a function of ~v consists of a constant 1/2,
and the dot product of ~v with a complex vector that
depends on ~u and ~w.6

IX. INTERFERENCE BETWEEN PRODUCTS
OF PAULI FILTERS

The presence of the constant i in Eq. (103) is interest-
ing in that it shows that we can arrange for interference
using only Stern-Gerlach filters. When we pass from the
wave function (spinor) formalism to the density matrix
formalism, we eliminate the U(1) gauge freedom. Now
we see that this interference is not a simple wave effect
that depends on path as in the two slit experiment. Thus
this interference is a physical effect associated with the
Clifford algebra in which the spin SU(2) is embedded.

In order to better understand the interference effect
that can be ascribed to Stern-Gerlach filters, let us con-
sider a spin−1/2 fermion particle beam split by a beam
splitter into two beams that pass through similar Stern-
Gerlach composite filters. The two filters have identical
first and last spin projection operators, but the central
projection operators are different. After the beams pass
through the Stern-Gerlach filters, they are recombined as
shown in Fig. (1). The middle filter effects the interfer-
ence pattern as we now calculate.

6 The possible division by zero in Eq. (103) could be avoided by
using the more general Schwinger measurement algebra symbols.



16

FIG. 1: A beam of spin−1/2 fermions begins at the left and
is split into two beams by a beam splitter. The two beams are
each passed through a series of 3 Stern-Gerlach filters. The
first and last filter of each series are identical, but the cen-
tral filter differs. After the series of filters, the two beams are
brought together to generate an interference pattern. The ori-
entation of the center filters effects the intensity of the beam
and also produces interference effects detectable only in the
interference pattern.

w

w

v

v′

u

u

Ignoring the operation of the beam splitter, the oper-
ator FIE for the interference experiment is given by the
sum of two products of spin operators:

FIE = PuPvPw + PuPv′Pw. (104)

Applying Eq. (103) we can see the interference term:

FIE = ( 1
2 + ~u+~w+i ~w×~u

2(1+~u·~w) · ~v)PuPw

+( 1
2 + ~u+~w+i ~w×~u

2(1+~u·~w) · ~v′)PuPw

= (1 + ~u+~w+i ~w×~u
2(1+~u·~w) · (~v + ~v′))PuPw

(105)

If ~v = ~v′ then, while there will still be a complex rota-
tion, there will be no interference between the two beams.
The two different directions ~v and ~v′ create two different
paths from ~u to ~w. The interference between these two
different paths turns out to be proportional to the sur-
face area of the quadrilateral on the unit sphere defined
by the four points ~u,~v, ~w,~v′. To show this, it is useful
to consider closed paths, that is, to consider sequences of
Stern-Gerlach filters that begin and end with the same
orientation.

If ~A = ~B, Eq. (103) reduces to:

gABA =
1 + ~A · ~B

2
. (106)

This shows that when we consider only a single Stern-
Gerlach filter placed between two identical Stern-Gerlach
filters, the result is equivalent to a single lossy Stern-
Gerlach filter. While these are closed paths, they enclose
no surface area, so the change in phase is zero.

Let’s consider the closed spin projection paths around
two adjoining spherical triangles on the surface of the
unit sphere: 4ABC, 4ACD and ♦ABCD as shown
in Fig. (2). There are three closed paths that all start

FIG. 2: Two adjoining spherical triangles on the unit sphere.
The complex phase parts of guvw are additive, that is,
arg(gABCD) = arg(gABC) + arg(gABD), and therefore the
complex phase of a series of projection operators can be de-
termined by the area of the spherical triangle they define.
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and end at A (and have the same orientation). As an
operator, each is associated with a complex multiple of
PA:

FABC = PAPBPCPA = gABCPA

FACD = PAPCPDPA = gACDPA

FABCD = PAPBPCPDPA = gABCPAPCPDPA

= gABCgACDPA

(107)
The complex multiple of PA associated with ♦ABCD
is the product of the complex multiple of PA associated
with 4ABC and the complex multiple of PA associated
with 4ACD. Thus the phases are related:

arg(gABCgACD) = arg(gABC) + arg(gACD). (108)

This calculation can be extended to arbitrary shapes,
so the phase of a closed oriented path of spin projec-
tion operators must be proportional to the surface area
bounded by the path. The constant of proportionality
can be found by looking at infinitesimal paths and is
1/2. The resulting formula for the phase of a product of
spin projection operators is:

arg(gABCgACDgADE ...)
= arg(gABC) + arg(gACD) + arg(gACE) + ...
= 1

2 (Spherical area defined by path ABCDE...),
(109)

Thus there is a geometric relationship between phase
changes of spin projection operators and paths through
which they are rotated. In Section sec:PaPiPF we will
elaborate this relationship.

If we consider a path defined by spin operators that
goes around the equator of the unit sphere, the surface
area cut by the path will be 4π/2 = 2π, and the complex
phase associated will be 2π/2 = π. For example, let the
sequence of orientation vectors be ẑ, x̂, −ẑ, −x̂ and ẑ.
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The operator for this sequence of Stern-Gerlach filters is:

F = PzPxP−zP−xPz

=
1
4

(
1 0
0 0

)(
1 1
1 1

)(
−1 0
0 0

)(
1 −1
−1 1

)(
1 0
0 0

)
= −1

4

(
−1 0
0 0

)
= −1

4
Pz (110)

The overall effect of the above filter is to multiply the
Sz = +1/2 component of a spinor by −1/4 and to an-
nihilate the Sz = −1/2 component. Thus the amplitude
will decrease by a factor of 16 and a phase rotation of π
will be effected.

It is a well known fact of quantum mechanics that when
a spinor is rotated through an angle of 2π using another
spinor, the rotated spinor obtains a phase angle of π or
is multiplied by −1. From the viewpoint of the density
matrix formalism, this is a consequence not of some ob-
scure feature of the electron, but instead is a consequence
of the gauge freedom introduced in factoring the natural
Banach space into an unphysical Hilbert space.

X. PHASES AND PROBABILITIES OF
PROJECTION OPERATORS

In order to further explore the relationship between
phases and probabilities in products of projection opera-
tors, we now introduce three unit vectors, ~r, ~g, ~b. Phases
are associated with products of projection operators that
are not coplanar. For simplicity, we will assume that the
three vectors make up an equilateral spherical triangle.
That is, we assume that

~r · ~g = ~g ·~b = ~b · ~r = cos(θ∠), (111)

where θ∠ is the opening angle between any pair of the
vectors. We now further explore the relationship between
probabilities and the complex phase (and generalizations
of the complex phase) for projection operators that form
equilateral triangles in 3−space.

Our eventual objective is to analyze products of pro-
jection operators of the form R̂ĜB̂. We will begin by
analyzing the Pauli algebra situation. This will use the
standard probability structure of quantum mechanics.
Accordingly, define the projection operators:

Pr = (1 + σr)/2 = (1 + ~r · ~σ),
Pg = (1 + σg)/2,
Pb = (1 + σb)/2,

(112)

we desire to calculate the product:

Frgbr = Pr Pg Pb Pr = T (rgbr) eiφ(rgb) Pr, (113)

where T (rgb) is the (real) amplitude associated with the
sequence and φ(rgb) is the phase. We expect that T (rgb)
will factor into two parts, each associated with the losses
in traversing from one filter to another:

T(rgbr) = TRG TGB TBR. (114)

For the usual Pauli algebra, TRG is simply

TRG = TGB = TRB =
√

(1 + cos(θα))/2. (115)

In later sections this paper will generalize the Pauli alge-
bra so as to form probabilities larger than this, but for
now, let us first carefully examine the probabilities of the
Pauli algebra.

The overall probability, P (rgb) = T 2(rgbr) is given by
the product of three identical independent transitions,
each with probability (1 + cos(θ∠))/2. The overall prob-
ability is therefore:

P (rgbr) =
1
8
(1 + cos(θ∠))3, (116)

and the amplitude is just the square root of this:

T (rgbr) = (0.5 + 0.5 cos(θ∠))1.5. (117)

The phase, according to Eq. (109), is half the area of the
spherical triangle defined by ~r, ~g, and ~b. The area of a
spherical triangle is the excess over π of the sum of its
corner angles. Thus

φ(rgb) = (3θc − π)/2, (118)

where θc is a corner angle. Applying the law of cosines
for spherical triangles gives the following relationship be-
tween θc, the angles of the spherical equilateral triangle,
and θ∠ the sides of the triangle:

cos(θ∠) = cos2(θ∠) + sin2(θ∠) cos(θc). (119)

substituting this into Eq. (118) and converting sines into
cosines gives:

φ(rgb) = 3
2 cos−1(cos(θ∠)/(1 + cos(θ∠)))− π

2 . (120)

Combining this with Eq. (117) gives the relationship be-
tween phase and probability for equilateral spherical tri-
angles as:

φ = 3
2 cos−1

(
1− 1

2(T (rgbr))2/3

)
− π

2 ,

= 3
2 cos−1

(
1− 1

2P 1/3

)
− π

2 .
(121)

There are several important special cases. When P = 1
one finds that φ = 0 as is appropriate for three vectors
in the same direction. When P = (0.5)3 = 1/8, the
three vectors are perpendicular and φ = π/4. When
P = (0.25)3 = 1/64, the three vectors are coplanar, 120
degrees apart, and φ = π.

XI. EXPONENTIAL MAPS AND PARTICLE
MODELS

A convenient method of obtaining nonstandard repre-
sentations of Clifford algebras, and therefore representa-
tions where the geometric squared magnitude may give
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a different probability from the usual, is to use the expo-
nential of a complex multiple of a canonical basis element.
To demonstrate this, consider the following mapping of
the Clifford algebra CL(3, 1):

x̂→ x̂′ = e−αbzt/2 x̂ e+αbzt/2,
= x̂,

ŷ → ŷ′ = e−αbzt/2 ŷ e+αbzt/2,
= ŷ,

ẑ → ẑ′ = e−αbzt/2 ẑ e+αbzt/2,

= ẑe+αbzt,

t̂→ t̂′ = e−αbzt/2 t̂ e+αbzt/2,

= t̂e+αbzt,

(122)

where α is a real (or complex) constant. The mapping
clearly preserves multiplication and addition, so the set
{x̂′, ŷ′, ẑ′, t̂′} also forms a basis for the Clifford algebra
CL(3, 1). Thus we can modify a given matrix representa-
tion of a Clifford algebra by using the exponential map.
That the new representation carries a different probabil-
ity interpretation is seen by noting that

|ẑ′|2G = |t̂′|2G = cosh2(α) + sinh2(α) = cosh(2α), (123)

while |ẑ|2G = |t̂|2G = 1, and that the alteration also occurs
in the primitive idempotents (1± ẑ)/2 and (1± t̂)/2. If,
in the above example, we had instead chose exp(αx̂y),
while we would have found that x̂ and ŷ were remapped,
we would still have |x̂′|2G = |x̂|2G, etc., and thus the prob-
ability interpretation would be unchanged.

If we are to restrict our attention to representations of
Clifford algebras that treat the spatial dimensions, x̂, ŷ,
and ẑ, equivalently, then we can only exponentiate with
canonical basis elements that have no spatial orientation.
Among the Dirac algebra (i.e. the complex CL(3, 1)), this
restricts our attention to exponentiation by x̂yz, t̂, and
x̂yzt, or the imaginary multiples of these. Half of these
six possibilities square to −1 and therefore correspond to
rotations that leave probabilities unchanged:

x̂yz t̂ x̂yzt

x̂ → x̂ cx̂+ sx̂t cx̂+ sŷzt

ŷ → ŷ cŷ + sŷt cŷ − sx̂zt

ẑ → ẑ cẑ + sẑt cẑ + sx̂yt

t̂ → ct̂− sx̂yzt t̂ ct̂+ sx̂yz

(124)

where c and s stand for the cosine and sine. The rotations
that modify the | |2G are almost the same:

îxyz ît îxyzt

x̂ → x̂ cx̂+ sîxt cx̂+ sîyzt

ŷ → ŷ cŷ + sîyt cŷ − sîxzt

ẑ → ẑ cẑ + sîzt cẑ + sîxyt

t̂ → ct̂− sîxyzt t̂ ct̂+ sîxyz

(125)

but with c and s standing for the hyperbolic trigonomet-
ric functions. One can also repeatedly apply different

exponential maps. It should be noted that if a canoni-
cal basis element happens to commute with all the rest
of the algebra, the exponential map will be the identity.
We will ignore these trivial maps.

If two canonical basis vectors are modified by an expo-
nential map, one finds that the product of the two basis
vectors is unmodified. For example:

x̂t
′

= (x̂′)(t̂′),
= (x̂e+αîxyzt)(t̂e+αîxyzt),
= x̂t̂e−αîxyzte+αîxyzt),
= x̂t.

(126)

The product of a modified vector by an unmodified vector
is a bivector that is modified, while the product of two
unmodified objects is also unmodified. Thus the prop-
erty of “is modified by the exponential map χ” divides
the Clifford algebra into two subspaces, one of which is
modified while the other is unmodified. Of course 1 al-
ways shows up in the unmodified half.

As an illustration of the exponential modification of a
representation, and how this produces a modification of
the probability postulate, we apply the αîxyzt exponen-
tial map to the Weyl representation. This exponential
map has the attribute that it does not modify any of the
diagonalized operators. Of the four rows of matrices in
Eq. (46), the middle two are modified while the top and
bottom rows are not. Thus the 16 complex degrees of
freedom of the Clifford algebra are split into two groups
of 8 according to a 2× 2 checkerboard pattern: 1 1 c c

1 1 c c
c c 1 1
c c 1 1

 , (127)

where 1 designates the entries that are unmodified, while
c designates the entries that are modified. The effect of
the modification is to increase the relative intensities of
the modified entries.

In the Weyl representation of the Dirac algebra, the
diagonal primitive idempotents are operators that pick
out the four components of a spinor. The four compo-
nents correspond to the left and right handed electrons
and positrons and the spinor is composed as follows:[12,
§3.3]  ēL

eL

eR

ēR

 (128)

Earlier in this paper, we noted that square spinors pro-
vide a method of combining multiple particles into a sin-
gle Dirac equation. In that context, as a toy model, we
could interpret the 4 columns in the above matrix as four
different spin−1/2 particles.7 Naming these particles a,

7 This follows Trayling, [11] [4] who puts the eight elementary
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b, c, and d, we could suppose that Eq. (127) implies that
these four particles have components that can be char-
acterized as having aR, āR, bR, b̄R, c̄L, cL, d̄L, and dL

more intense (i.e. associated with the modified elements
of the matrix), and the remaining 8 particles less intense.
There are many possible ways that one might arrange the
particles, and with the addition of an extra dimension
(or three or four, as in the case with Trayling[11]), we
could possibly obtain a model of the elementary fermi-
ons. However, this would be inconsistent with our as-
sumption of the use of the density matrix formalism and
the Schwinger measurement algebra.

As an alternative toy model, we could suppose that the
4× 4 Dirac matrix can provide us with only one particle,
that particle being composed of left and right handed
components, and particle and antiparticle components
in the usual manner. That is, the various components
of the electron, eL, eR, ēL, and ēR are to be associ-
ated with the diagonal primitive idempotents. The off
diagonal elements then are associated with interactions
between these components.

For the choice of αîxyzt, the modified interactions cor-
respond to interactions that relate a left-handed particle
to a right-handed one, while the unmodified interactions
relate to interactions that preserve handedness. Again,
the addition of extra dimensions provides some leniency
that may allow modeling of the elementary particles, but
the author believes that a more profitable method is to
assume a preon model that will be described in a later
paper.

A conceptual difficulty in associating the elementary
particles with the primitive idempotents (in particular,
the diagonal matrix elements) of a Clifford algebra, and
the elementary interactions with the nilpotents (off di-
agonal matrix elements), is that because of the Pauli
exclusion principle we expect the fermions to satisfy an
anticommuting Grassmann algebra with ψ†ψ† = 0, while
the particle interactions are modeled as bosons where the
creation operators commute. Thus the algebraic assump-
tions in our second toy model are apparently in reverse
of the usual.

But our usual algebraic assumption of nilpotency for
these particles appears in the spinor representation,
where our intuition has been well honed by long prac-
tice, and in this paper we are explicitly working in the
density matrix formalism. Thus after converting from
spinor form to density matrix form, the creation and an-
nihilation operators for a state are idempotent:

ρ = ψ ψ†,
ρ ρ = ψ ψ† ψ ψ†,

= ψ ψ†.
(129)

fermions of the electron family, e, νe, dR, dG, dB , uR, uG,
and uB , along with handedness and particle/antiparticle into
the Clifford algebra CL(7, 0).

In treating the bosons as interactions between fermi-
ons, the Pauli principle shows that it is impossible to
simultaneously create two bosons using identical fermi-
ons, however, there is no restriction on creating two ap-
parently identical bosons by two distinct fermion inter-
actions. Thus the bosons satisfy Bose statistics due to
the requirement that the fermions that create and anni-
hilate them be separated. The fact that all the bosons
are shared by the three families of fermions suggests that
the three families are related, a topic we will continue in
the next section.

XII. HIDDEN DIMENSIONS AND
PROBABILITIES.

This section introduces physically relevant and inter-
esting, examples of modifications of the probability rule
that were described earlier. We will be dealing with
phases and probabilities in modifications of the Pauli al-
gebra that can be attributed to the presence of hidden
dimensions. Let ŝ and t̂ be considered as a hidden spatial
and temporal dimension, with signatures +1 and −1, re-
spectively. We will be considering these as extensions of
the Pauli algebra. Note that by setting ŝ = ix̂yzt, we can
arrange for these examples to be exhibited by the Dirac
algebra.

The probability of transition between two spinors that
are oriented in different directions ~u and ~v with an angle
of θ between them is:

Pθ = tr
(

1+~u·~σ
2

1+~v·~σ
2

)
,

= 1
4 tr(1 + û+ v̂ + ûv̂),

= 1
4 tr(1 + ~u · ~v),

= 1
4 2(1 + cos(θ)) = 1+cos(θ)

2 ,

(130)

where we have changed notation from the Pauli algebra
to the Clifford algebra halfway through the calculation
as a reminder of the notation to the reader, used the fact
that tr(1) = 2, and that

ûv̂ = ~u · ~v + (~u× ~v) · ~σ. (131)

This calculation has been made the traditional way, us-
ing the trace function. We now redo the calculation with
more attention paid to the details, but using the geomet-
ric definition of the trace in the density matrix formalism.

We begin with two operators, û and v̂. These operators
are roots of unity:

û û = 1, v̂ v̂ = 1, (132)

and therefore they possess eigenvectors with eigenvalues
of ±1. We are concerned with the eigenvectors that pos-
sess eigenvalues of +1. If we were to solve this equation
with spinors, we would find these eigenvectors by solv-
ing the eigenvector equation, and then convert them to
density matrix form by multiplying by their Hermitian
conjugate. The result would be an element of the Pauli
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algebra. It is easier, however, to note that the eigenvec-
tors with eigenvalues +1 are obvious and can be written
down much more easily by simply noting:

û 1+û
2 = 1+û

2 , or
û ρu = +ρu,

(133)

where ρu is the density matrix corresponding to the
spinor that has spin +1/2 in the ~u direction. With the
form of these density matrices established, the transition
probability can be computed as twice the 0−blade:

Pθ = 2〈(1 + û)(1 + v̂)/4〉0. (134)

Since we have a geometric theory that is rotationally in-
variant, let us choose convenient coordinates and arrange
for û and v̂ to be convenient:

û = x̂,
v̂ = cos(θ)x̂+ sin(θ)ŷ. (135)

Then the blade calculation for the probability is:

Pθ = 2〈(1+x̂)(1+cos(θ)x̂+sin(θ)ŷ)/4〉0 = (1+cos(θ))/2.
(136)

It should be noted that the equivalent calculation using
spinors and the usual representation of the Pauli algebra
is rather more involved.

If Pθ = 0.5, the two directions ~u and ~v are independent.
This happens when cos(θ) = 0, or

θ0.5 = π/2. (137)

If our waves were classical, we would expect that set-
ting θ = π/2 would leave the two waves independent.
In quantum mechanics, instead this means that the two
waves are independent in that the transition probabili-
ties are 50%. For the Pauli algebra, three directions exist
that are mutually independent, and these form 90 degree
angles with each other.

In the above paragraph, we showed that in geometric
form, we can take two operators that square to 1, derive
their +1 eigenvectors (or states), and compute the an-
gle between the two states very easily in the geometric
language. Nothing in the above made any assumptions
about the operators û and v̂ other than that they square
to unity. As was shown in Section (VII), the geometric
trace gives the same results as the usual theory in cases
where the roots of unity used to define the spinor are
conventional.

We now repeat the calculation with the assumption
that the two operators (and therefore their states) share
a little of the hidden dimension ŝ. Define

ûs = cos(α)û+ sin(α)ŝ, (138)

where α is a real number. This is an example of the
transformations of the canonical basis elements by expo-
nentiation. In this case, one obtains the transformation
by applying the transforming functions are of the form

FIG. 3: Transition probabilities Pθs between ûs = cos(α)û +
sin(α)ŝ and v̂s for α = nπ/8, n = 0, 1, 2, 3, 4. The usual prob-
ability, Pθ = (1 + cos(θ))/2 is shown as the darker line.

P

0.0
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1.0
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exp(0.5αx̂s), as in Eq. (122), and then transformed twice
more with x̂ replaced by ŷ and t̂.

As with the exponential transformations, we have that
ûs ûs = 1, and we can compute the transition probabili-
ties between the density matrix of the +1/2 states of the
ûs operators as:

Pθs = 2〈(1 + ûs)(1 + ûs)/4〉0,
= 2〈(1 + cos(α)x̂+ sin(α)ŝ)(1 + cos(α) cos(θ)x̂

+cos(α) sin(θ)ŷ + sin(α)ŝ)/4〉0,
= 2(1 + sin2(α)) + cos2(α) cos(θ) + /4,
= 1

2 ((1 + sin2(α)) + cos(θ)(1− sin2(α)).
(139)

Setting θ = 0, we get that the probability is 1. Setting
θ = π, we get the minimum value of Pθs as:

Pπs = (1− cos(2α))/2. (140)

When α = 0, we get the usual result that the minimum
probability is zero when the vectors are in opposite di-
rections.

The minimum probability increases as α increases until
at α = π/2, it is, as expected, stuck at one. Drawn as
a function of cos(θ), we have that Pθs becomes flatter
as α increases. See Fig. (3) for an illustration. This is
consistent with our physical intuition. For the two states
to be independent, the angle between them must satisfy:

1/2 = (1 + sin2(α) + cos2(α) cos(θ))/2, so
θ0.5s = cos−1(− sin2(α)/ cos2(α)),

= cos−1(− tan2(α)).
(141)

This is an angle greater than 90 degrees. In order to allow
three independent directions to be mutually independent,
we must have that θ0.5s ≤ 2π/3.

Let us repeat the exercise, this time adding a little of
the hidden dimension t̂ instead of ŝ to the two operators.
As before, define

ût = cosh(α)û+ sinh(α)t̂, (142)
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where α is a real number. As before, ût ût = 1 and the
calculation goes through with ût and v̂t.

Pθt = 2〈(1 + ût)(1 + ût)/4〉0,
= 2〈(1+cosh(α)x̂+sinh(α)t̂)(1 + cosh(α) cos(θ)x̂

+cosh(α) sin(θ)ŷ + sinh(α)ŝ)/4〉0,
= 2(1 + cosh2(α) cos(θ)− sinh2(α))/4,
= (1− sinh2(α) + cosh2(α) cos(θ))/2. (bad)

(143)
When θ = 0, this gives the usual result Pθt = 1, but
when θ = π, we get a minimum value for Pθt which is
negative:

Pπt = (1− cosh(2α))/2. (bad) (144)

Of course this is in violation of our physical intuition.
Negative probabilities are bad enough, but the two states
become more distinct the larger the amount that they
share (i.e. as α gets larger, Pθt gets smaller).

Evidently, this is an opportunity for us to use the new
probability assumption introduced in this paper. There-
fore let us repeat the calculation for Pθt, but using the
| |2G, instead of the trace. The calculation will be as
follows:

Pθt = |ρuρv|2G/|ρu|2G = |ρuρv|2G/|ρv|2G. (145)

First, computing |ρu|2G, we find that:

|ρu|2G = |(1 + cosh(β)û+ sinh(β)t̂)/2|2G,
= (1 + cosh2(β) + sinh2(β))/4,
= cosh2(β)/2.

(146)

The formulas get long, so we abbreviate cosh(β) = βc,
sinh(β) = βs, cos(θ) = c, sin(θ) = s. The computation
for |ρuρv|2G is as follows:

|ρuρv|2G = |(1 + ût)(1 + v̂t)/4‖2
G,

= |(1 + βcx̂+ βst̂)
(1 + cβcx̂+ sβcŷ + βst̂)/4|2G,

= 1
16 |(1 + cβ2

c − β2
s ) + (βc + cβc)x̂+ (sβc)ŷ

+(2βs)t̂+ (βcβs − cβcβs)x̂t+ (−sβcβs)ŷt
+(sβ2

c )x̂y|2G,
= 1

16 ((1 + c2β4
c + β4

s + 2cβ2
c − 2β2

s − 2cβ2
cβ

2
s )

+(β2
c + c2β2

c + 2cβ2
c ) + (s2β2

c ) + (4β2
s )

+(β2
cβ

2
s + c2β2

cβ
2
s − 2cβ2

cβ
2
s ) + (s2β2

cβ
2
s )

+(s2β4
c )),

= 1
16 ((1 + β4

c + β4
s + 2β2

c + 2β2
s + 2β2

cβ
2
s )

+c(4β2
c − 4β2

cβ
2
s )),

= 1
16 ((2 + 2β2

c + 2β2
s + 4β2

cβ
2
s )

+c(4β2
c − 4β2

cβ
2
s )),

= 1
8 ((2β2

c + 2β2
cβ

2
s ) + c(2β2

c − 2β2
cβ

2
s ),

= β2
c

4 (β2
c + c(1− β2

s )),

(147)

Finally,

Pθt = |ρuρv|2G/|ρu|2G,
= 1

2 ((1 + sinh2(β)) + cos(θ)(1− sinh2(β))),
(148)

As expected, it is an increasing function of β and is 1 for
θ = 0. Putting β = 0 gives the usual Pauli probability of
(1 + cos(θ))/2, while setting θ = π gives Pπt = sinh2(β).
Therefore, we have a probability interpretation only so
long as |β| < sinh−1(1) = 0.88137, with larger values
giving probabilities greater than one. The value of θ that
corresponds to independent probabilities is

θ0.5t = cos−1(− sinh2(β)/(1− sinh2(β))). (149)

XIII. PHASES IN MODIFIED PAULI
ALGEBRAS

As we will see in later sections, sets of three vectors
that correspond to mutually independent probabilities
(i.e. θ0.5s or θ0.5t) are useful in modeling the elementary
fermions. Intuitively, these correspond to mutually ind-
pendent coordinate systems that are generalized to the
presence of a hidden dimension. Phases in the Pauli ma-
trices are handled easily because of the convenient fact
that σxσyσz = i. However, many Clifford algebras do
not possess a natural imaginary unit, that is, an element
that squares to −1 and commutes with everything in the
algebra.

The previous section considered modifications of the
type:

σu → σ′u = cos(α)û+ sin(α)ŝ, (150)

where α was a real parameter. More generally, let us
consider modifications of the Pauli algebra of the sort:

σu → σ′u = Aû+B, (151)

where û is a basis vector from the Pauli algebra (i.e.
û = uxx̂+uy ŷ+uz ẑ) and A and B are Clifford algebraic
constants that have no directional content, but such that
σ′u still satisfies the usual spin−1/2 operator equation:

σ′u σ
′
u = (Aû+B)2 = 1, (152)

and therefore we can trivially solve the eigenvector equa-
tion:

σ′u
2

(1 + σ′u)/2 =
1
2
(1 + σ′u)/2; (153)

that is, the analogue of the spin−1/2 eigenvector equa-
tion in the ~u direction.

Examples of A and B that satisfy Eq. (152) include:

A = (cos(α)), (1̂+ t̂+x̂yzt), (t̂+ŝt), (ŝt+ x̂yzt),
B = (sin(α)ŝ), 0, (1̂+ frm[o]−−ŝ), (1̂ + x̂yzs),

(154)
where we have left the reader to supply most of the
real factors necessary to arrange for normalization as
discussed below. The first column gives the ŝ example
discussed in the previous section.
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Since A and B are required to have no orientation, we
can factor û through them, leaving them changed to Ã
and B̃:

Aû = ûÃ, ûB = B̃û. (155)

For example:

(1̂ + t̂+ x̂yzt) û = û (1̂− t̂− x̂yzt), (156)

so if A = (1̂+ t̂+ x̂yzt), then Ã = (1̂− t̂− x̂yzt). Clearly,
tilde squares to unity:

˜̃A = A. (157)

With this notation, Eq. (152) becomes:

1 = (Aû+B)2,
= (Aû+B)(Aû+B),
= AûAû+BAû+AûB +BB),
= AÃûû+BAû+AB̃û+BB,

= (AÃ+BB) + (BA+AB̃)û.

(158)

Which we can achieve by arranging for:

AÃ+BB = 1, BA+AB̃ = 0. (159)

These relations will allow the reader to quickly derive the
normalization constants needed in Eq. (154).

As in Section (IX), to get phases we will consider prod-
ucts of projection operators that define a triangle in the
unit sphere. In order to match notation with applications
to the elementary fermions, we will define the three unit
vectors in color notation. We need three vectors that are
equidistant from each other and that are independent in
the sense that the transition probabilities between them
give 50%. To make the transition probabilities equal,
the three unit vectors, ~r, ~g and ~b, must be distributed
equidistant on a cone.

We define the angle between two of the vectors as θ∠:

~r · ~g = ~r ·~b = ~g ·~b = cos(θ∠), (160)

so 0 < θ∠ ≤ 2π/3. The three vectors lie equidistant on a
cone that has an opening angle of θb, where b stands for
binon. The relation between the cone opening angle and
the angle between two of the vectors is:

cos(θ∠) = cos2(θb)− sin2(θb)/2, (161)

as a small amount of trigonometry will show. For com-
pact equations, we will abbreviate:

cos(θ∠) = c∠, sin(θ∠) = s∠, (162)

and similarly for cb and sb.
In order to simplify calculations, we choose the z−axis

oriented in the direction of the red vector, and put the
x−axis so that the green vector is in the x−z plane with

the blue vector on the +y side. Explicit coordinates for
the three vectors is thus:

~r = ( 0, 0, 1),
~g = ( s∠, 0, c∠),
~b = ( bx by, c∠),

(163)

where bx = c∠(1 − c∠)/s∠ and by =
√

(b2x + s2∠). The
canonical basis vectors (which are also just Pauli algebra
spin−1/2 operators in their various directions) associated
with ~r, ~g and ~b are:

σr = ẑ,
σg = s∠x̂+ c∠ẑ,
σb = bxx̂+ by ŷ + c∠ẑ.

(164)

The modified Pauli operators are:

r̂ = Aσr +B,
ĝ = Aσg +B,

b̂ = Aσb +B,
(165)

and the corresponding projection operators are:

R̂ = (1 +Aσr +B)/2,
Ĝ = (1 +Aσg +B)/2,
B̂ = (1 +Aσb +B)/2,

(166)

We now consider products of the form R̂ĜR̂ and R̂ĜB̂R̂.
First, let us suppose that B = 0, and so, by Eq. (159),

we have AÃ = ÃA = 1. These cases are analogous
to the usual Pauli case, but without the convenience of
σxσyσz = i as we now show. Computing R̂ĜR̂, the hard
way, we find that the result is a real multiple of R̂:

R̂ĜR̂ = 1
8 (1 +Aẑ)(1 + c∠Aẑ + s∠Ax̂)(1 +Aẑ),

= 1
8 ((2 + 2c∠) + (2 + 2c∠)Aẑ),

= 1+c∠
4 (1 +Aẑ),

= 1+c∠
2 R̂,

(167)
where there is considerable cancellation resulting from
swapping the order of the canonical basis vectors ẑ and
x̂ with A so as to get all the canonical basis vectors to
the right, and then using AÃ = 1 to simplify. This result
is the familiar (1 + cos(θ))/2 result of the Pauli algebra.

To derive R̂ĜB̂R̂ for the case of B = 0, let us begin
with the standard Pauli algebra result Eq. (113), with
i = x̂yz, and with r̂ = ẑ:

Frgbr = T (rgb)eφ(rgb)dxyz(1 + ẑ)/2, (168)

where T (rgb) and φ(rgb) are real functions defined by
the Pauli algebra and explicitly evaluated in Eq. (117)
and Eq. (120). The multiplication of the canonical basis
vectors on the left by A is an isomorphism of the alge-
bra in that it preserves the additive and multiplicative
relationships that define the algebra. For example:

Ax̂Aŷ = AÃx̂ŷ = x̂ŷ,

= −ŷx̂ = −AÃŷx̂,
= −(Aŷ)(Ax̂).

(169)
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This transformation converts the x̂yz to Ax̂yz. Alterna-
tively, we can convert the x̂yz in Eq. (168) to x̂y, which
will then be left untouched by the transformation. To do
this, note that (1 + ẑ) is an eigenvector of ẑ with eigen-
value 1. Thus we can rewrite Eq. (168) as:

R̂ĜB̂R̂ = T (rgb)eφ(rgb)cxyR̂,

= T (rgb)eφ(rgb)AdxyzR̂.
(170)

Thus we have that the situation with B = 0 is iden-
tical to that of the usual Pauli algebra with no hidden
dimension, except that we must replace the imaginary
number i with either the Clifford algebraic element x̂y,
or Ax̂yz. Either of these constants will commute with r̂,
but only the second will necessarily also commute with
ĝ and b̂. Both these constants square to −1, but neither
must necessarily commute with all the other elements of
the Clifford algebra and can therefore be considered as a
geometric i.

We now let B be arbitrary and compute R̂ĜR̂. Using
Eq. (164), we first rewrite Ĝ as follows:

Ĝ = (1 + c∠Aẑ + s∠Ax̂+B)/2,
= (1 +Aẑ +B)/2 + (c∠ − 1)Aẑ/2 + (s∠)Ax̂/2,
= R̂+ (c∠ − 1)Aẑ/2 + (s∠)Ax̂/2,

(171)
Substituting this into R̂ĜR̂ gives:

R̂ĜR̂ = R̂+
c∠ − 1

2
R̂AẑR̂+

s∠

2
R̂Ax̂R̂, (172)

so we need to compute R̂AẑR̂ and R̂Ax̂R̂.
Let us work on the last term in Eq. (172) first. We

conveniently multiply by 4, multiply out terms and then
factor x̂ and ẑ out to the right:

4R̂Ax̂R̂ = (1 +Aẑ +B)Ax̂(1 +Aẑ +B),
= Ax̂+AẑAx̂+BAx̂+Ax̂Aẑ +AẑAx̂Aẑ

+BAx̂Aẑ +Ax̂B +AẑAx̂B +BAx̂B,

= Ax̂−AÃx̂z +BAx̂+AÃx̂z −AÃAx̂

+BAÃx̂z +AB̃x̂−AÃBx̂z +BAB̃x̂,

= (A−AÃA+BAB̃ +BA+AB̃)x̂
+(BAÃ−AÃB)x̂z.

(173)
From Eq. (159), one obtains that

AÃ = 1−BB, so
BAÃ = B −BB = AÃB,

(174)

so BAÃ−AÃB = 0. Similarly,

AÃ = 1−BB, so
AÃA = A−B(BA),

= A+BAB̃, so
0 = A−AÃA+BAB̃.

(175)

Substituting these relations, along with BA + AB̃ = 0
into Eq. (173) gives:

4R̂Ax̂R̂ = (0 + 0)x̂+ (0)x̂z = 0, (176)

and the last term in Eq. (172) is zero.
The second to last term in Eq. (172) may be similarly

manipluated to give:

4R̂AẑR̂ = Aẑ +AÃ+BAẑ +AÃ+AÃAẑ

+BAÃ+AB̃ẑ +AÃB +BAB̃ẑ,

= (2AÃ+AÃB +BAÃ)+
(A+BA+AÃA+AB̃ +BAB̃)ẑ,

= 2AÃ(1 +B) + 2AÃAẑ,
= 2AÃ(1 +Aẑ +B) = 4AÃR̂.

(177)

Upon substituting Eq. (177) and Eq. (176) into Eq. (172)
we have:

R̂ĜR̂ = R̂+ c∠−1
2 AÃR̂,

= (1− 1−c∠
2 AÃ)R̂.

(178)

For AÃ = 1, we have again reproduced the usual (1 +
cos(θ∠))/2 probability relationship of the Pauli algebra.

In Section (XII) we derived equations for probabili-
ties Pθs and Pθt that correspond to the cases of A =
cos(α), B = sin(α)ŝ and A = cosh(α), B = sinh(α)t̂,
respectively. We can now check the results of those
equations against Eq. (178) by substituting, respectively,
AÃ = cos2(α) and AÃ = cosh2(α). Since we are com-
puting here the probability associated with R̂ĜR̂ instead
of R̂Ĝ, our results are squared. For the first case, com-
paring against Eq. (139) we find:

PRGR = |R̂ĜR̂|2G/|R̂|2G,
= |(1− 1−c∠

2 AÃ)R̂|2G/|R̂|2G,
= (1− 1−c∠

2 AÃ)2,
= (1− 1−c∠

2 cos2(α))2,
= (Pθs)2,

(179)

as expected. For the second case, comparing against
Eq. (148) we find:

PRGR = (1− 1−c∠
2 AÃ)2,

= (1− 1−c∠
2 cosh2(β))2, (bad)

(180)

which is different from Eq. (148). The problem is that
our extended probability rule only computes the proba-
bility of transition between pairs of states and the above
calculation has two transitions, red to green and green
to red. The failure of the calculation calls into question
our ability to consider products of projection operators
of this sort.

The calculation for the probability of transition from
red to green is, as before:

PRG =
|R̂Ĝ|2G
|R̂|2G

. (181)

That the above gives the same result as Eq. (148) is left
as an exercise for the reader. We also leave as an exercise
the verification that the above calculation of R̂ĜR̂, for
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the case of AÃ > 1, gives the same result as what one
obtains in making the computation with

ût =
√
AÃû+

√
1−AÃ t̂ (182)

in the manner of Section (XII).
The author has been unable to find solutions for (Aẑ+

B)2 = 1 that have AÃ not real, except solutions that
have AB = BA = AB̃ = 0 such as the following:

A = i(x̂yz + ŝ)/2, B = (1− x̂yzs)/2. (183)

Nor has the author been able to prove that all solutions
in which AÃ is not real satisfy AB = 0. In the above
example, A and B are in the ideals generated by the
idempotents (1+ x̂yzs)/2 and (1− x̂yzs)/2, respectively,
and AÃ and BB are complementary idempotents that
sum to unity. One cannot parameterize these sorts of so-
lutions with trigonometric functions that rotate between
A and B in the manner of the two examples of Section
(XII).

Finally, we come to the problem of putting R̂ĜB̂R̂ into
a form similar to Eq. (170), but with B non zero. The
author’s computer, programmed in Java, has explored
several particular cases of this problem and has found
that, subject to the limitation that AÃ is a positive real
number, they are always of the form:

R̂ĜB̂R̂ = TRGTGBTBR eφ(rgb)cxy R̂. (184)

where Tχχ and φ(rgb) are the same real function that
attends the phases of the generalized Pauli algebra. We
assume that this is generally true and leave the proof as
an entertainment for the reader.8

XIV. GEOMETRIC GENERALIZED SPINORS

The previous section considered generalizations of the
Pauli algebra where û was replaced by û′ = Aû + B,
where A and B are elements of a Clifford algebra that
contains the Pauli algebra, subject to the restriction that
(A + û + B)2 = û2 = 1. So long as A was restricted to
a form where AÃ is real and positive, we showed that
such generalizations are equivalent to the simpler gener-
alizations of Section (V) with corresponding phases and
probabilities according to the cases:

0 < AÃ < 1 ≡ û → û′ = cos(α)û+ sin(α)ŝ,
1 < AÃ ≡ û → û′ = cosh(β)û+ sinh(β)t̂,

AÃ = 1 ≡ û → û′ = û,
(185)

where α = β = (AÃ)0.5, and where ŝ and t̂ are canonical
basis vectors of the Clifford algebra that square to +1
and −1, respectively.

8 It smells like a general result of Lie algebra.

We now proceed to an analysis of the algebras of the
û′ type, with out respect to the Clifford algebra in which
they are contained. That is, we will examine representa-
tions of these algebras and how they differ from the Pauli
algebra while ignoring the “hidden dimension” content.
We will call these “reduced” algebras in that they will
contain only elements that can be generated from modi-
fied Pauli vectors rather than the whole Clifford algebra.

The correspondences listed above in Eq. (185) are true
in that the computed transition probabilities between
two states oriented in directions differing by an angle θ∠

are identical, and in that there is a “phase” associated
with products of three projection operators. In Eq. (170)
we showed that these phases are of the form:

φ(rgb) x̂y, or φ(rgb) Ax̂yz, (186)

where φ(rgb) is a real number. Of these, the first, x̂y
takes the place of the imaginary unit in that

(x̂y)2 = −1, (187)

and Ax̂y commutes with r̂ = Aẑ + B, however, x̂y does
not commute with ĝ or b̂. This is a serious defect that we
will correct in the next paragraph. The second choice of
imaginary unit, Ax̂yz, also squares to −1, and commutes
with any element of the form Aû, but does not necessarily
commute with terms of the more general form Aû + B
unless B is real (as it is in the û′ examples of Eq. (185)).
We will define our spinors using the first type.

Phases appear in products of the form R̂ĜB̂R̂, where
x̂y necessarily commutes only with R̂. This is not a prob-
lem if we restrict ourselves to only considering products
that begin and end with R̂. As we saw in Eq. (178)) and
Eq. (184)), such products, subject to the requirement
that AÃ is real, commute with x̂y.

In the Pauli algebra, complex phases are associated
with spherical areas by the formula φ = S/2 where S
is the spherical area. This is a definition that does not
rely on any apparent choice of orientation. In the gen-
eralization to û′ = Aû + B, our phases only commute
with the projection operators associated with a particu-
lar point on the sphere, ~z, for example. To associate a
phase with a spherical area in the generalized Pauli alge-
bra, we must make a choice of this special point.9 This
is a gauge choice.

In order to arrange for our three projection operators,
R̂, Ĝ and B̂, to be treated equally, we will choose a di-
rection, or gauge, that is equidistant from each. In the
previous section we chose ~r, ~g and ~b so that ~r was ori-
ented in the +z direction. This was for calculational
convenience in that we were considering products of pro-
jection operators that had more R̂ than Ĝ or B̂. Now,

9 More accurately, cxy commutes with pairs of projection operators,

for example c±z′ = (1±Aẑ+B)/2. These correspond to opposite
points on the sphere through the ~z axis.
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we will instead choose coordinates so that the cone that
~r, ~g and ~b are on is centered in the +z direction. Rather
than Eq. (163), we will accordingly choose:

~r = ( sb, 0, cb),
~g = ( −sb/2, +sb

√
3/2, cb),

~b = ( −sb/2, −sb

√
3/2, cb),

(188)

where cb and sb are the cosine and sines of θb, the opening
angle of the cone. As before, we have that c∠ = c2b−s2b/2.

Our choice of gauge is equivalent to the selection of a
vacuum state in Schwinger’s measurement algebra. Since
it’s oriented in the z direction, we will label the projection
operator in that direction Ẑ:

Ẑ = (1 +Aẑ +B)/2. (189)

By the results of the previous section, we can define the
phase of any triangular region that includes ~z as a corner
by:

ẐÛ V̂ Ẑ = TzuTuvTvze
φ(zuvz)cxy Ẑ, (190)

where the other two corners are ~u and ~v and φ(zuvz) is
the real value from Eq. (184)). In the above, note that
x̂y commutes with Ẑ, and squares to −1, so fulfills these
duties of an imaginary unit, as far as the right hand side
of the equation.

To define the phase of a triangular region that does
not include the point ~z, we use the additive property of
phases:

φ(rgb) = φ(zrgz) + φ(zgbz) + φ(zbrz),
= φz(rg) + φz(gb) + φz(br),

(191)

where the φz notation indicates that the φ function de-
pends on the gauge choice. Because of the symmetry of
our choice of gauge with respect to ~r, ~g and ~b, we have
that φ(rgb) is three times the area of any of the three
triangles φz(χχ) in the above.

In keeping track of phases in this manner, we reduce
our modified Pauli algebra to probabilities and phases.
We have three cases, corresponding to AÃ greater, equal
or less than 1, but these three cases give identical phases,
and as far as probabilities, both Eq. (148) and Eq. (139)
are similar linear functions of cos(θ). So long as we are
concerned only with angles, phases and probabilities, we
need not distinguish between the AÃ > 1 and AÃ < 1
situations so long as we arrange for their probabilities to
be identical. Examining Eq. (148) and Eq. (139), we see
that the two assumptions are identical provided:

sin2(α) = sinh2(β), (192)

where α is used for the positive signature and β for the
negative. And both these cases include the usual Pauli
algebra with α = 0 or β = 0. Accordingly, from here on
we will assume the α case with 0 ≤ α < π/2 which gives
0 < AÃ ≤ 1.

FIG. 4: Table of standard model quantum numbers, weak
isospin (t3), and weak hypercharge (t0), for the electron fam-
ily.

t3 t0 Q Q′√3/2
eR 0 -1 -1 1/2
eL -1/2 -1/2 -1 -1/2
νL 1/2 -1/2 0 1
νR 0 0 0 0

d∗R 0 -1/3 -1/3 1/6
d∗L -1/2 1/6 -1/3 -5/6
u∗L 1/2 1/6 2/3 2/3
u∗R 0 2/3 2/3 -1/3

We can now define bras and kets in terms of projection
operators:

|R〉 = (R̂Ẑ)/TRZ ,

〈R| = (ẐR̂)/TRZ .
(193)

With this definition, the usual rules that define projec-
tion operators will function, for example:

|R〉〈R| = (R̂Ẑ)(ẐR̂)/(TRZ)2,
= TRZTZRR̂/(TRZ)2,
= R̂.

(194)

Putting Ẑ on the outsides of the bras and kets means
that any product of projection operators that is operated
upon with a bra on the left and a ket on the right gives
a result that is a “complex” multiple of Ẑ. For example,
to compute 〈R|ĜB̂|R〉, we replace Ĝ and B̂ with their
spinor products and obtain:

〈R| |G〉〈G| |B〉〈B| |R〉,
= (ẐR̂)(ĜẐ)(ẐĜ)(B̂Ẑ)(ẐB̂)(R̂Ẑ)/(TRZTGZTBZ)2,
= (ẐR̂ĜẐ)(ẐĜB̂Ẑ)(ẐB̂R̂Ẑ)/(TRZTGZTBZ)2,
= TRGTGBTBRe

(φz(rg)+φz(gb)+φz(br))̂iẐ.
(195)

where î = x̂y. Upon multiplying any two objects such as
the above, the Clifford algebraic parts, î and Ẑ, commute
with ẐẐ = Ẑ and î̂i = −1. Thus the set of such objects
are equivalent to the complex numbers. They form a
complex ideal of the Clifford algebra. In the application
sections of this paper, we will use this form.

XV. A GEOMETRIC MODEL OF THE
FERMIONS

We now examine the elementary fermions from the
context of the primitive idempotents of a Clifford algebra.
The primitive idempotents of a Clifford algebra arrive in
hypercubic form, for example, see Eq. (53) or Eq. (81).
That is, as the number of dimensions of the Clifford al-
gebra increase, the number of independent commuting
roots of unity increase and with each new root of unity,
the number of primitive idempotents double. Thus we
look for a hypercubic form in the elementary fermions.



26

FIG. 5: The fermion cube. The νR is not shown for clarity.
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A table of the usual quantum numbers for the elec-
tron family fermions is shown in Fig. (4), where the right
handed neutrino is needed both to obtain a number of
particles that is a power of two as well as to provide a
neutrino mass. The quantum numbers of the antiparti-
cles are the negatives of those shown, and the color quan-
tum numbers are suppressed. When the various colors
and the antiparticles are included, there are a total of 32
particles. When these are plotted according to weak hy-
percharge and weak isospin, the result is indeed a cube,
as shown in Fig. (5).

However, instead of a hypercube of dimension five that
we would expect from the number of particles, (i.e. 25 =
32) we have only a three dimensional cube (i.e. 23 = 8).
The problem is the quarks. Instead of having a power
of two of quarks, they appear in 3 × 23 form, situated
between an electron and an antineutrino, or between a
positron and a neutrino. See Fig. (6) for a drawing of
one of these structures. These columns, along with the
fact that there are three families of elementary fermions,
suggests that the elementary fermions are not elementary
particles but are composed of subparticles or preons.

According to this preon theory, the leptons are pure
states composed of three subparticles, while the quarks
are mixed states composed of these same three subpar-
ticles. The three particles making up a lepton must be
somehow distinguished, from the example of the quarks
we will call this color. Thus the leptons, being a mix-
ture of all three colors, are color singlets while the mixed
composition of the quarks produces color triplets.

According to this theory, the preons are handed par-
ticles and therefore must be massless. To create the
usual elementary particles there are two layers of con-
densation. The lowest layer combines three preons to
produce a handed states, for example, eL. The higher
layer combines two handed states to produce an elemen-
tary fermion, for example eL and eR combine to pro-
duce the electron. Since the preons combine to produce
the handed state before the handed states combine to
produce the fermion, the force between the preons must

FIG. 6: A column of quarks and leptons shown as bound
states of three binons each.
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be stronger than the force between the left and right
handed fermions. This implies that the natural scale for
the preon force is the Plank mass or even a multiple of it.
That the elementary particles appear pointlike is natural.

XVI. THE SMA OF DEEPLY BOUND
COMPOSITES

While the tools we have developed for analyzing the
primitive idempotents of Clifford algebras are apparently
the correct tool for analyzing the preons that we propose
make up the subparticles to the handed fermions (since
the preons have the cubic strucuture implied by this
analysis), but the Schwinger measurement algebra was
originally developed to account for properties of quantum
particles in general and certainly not the speculative pre-
ons discussed here. Thus we need to derive the Schwinger
measurement algebra for the case of deeply bound com-
posite particles made up of three preons. The result of
our derivation will be a 3× 3 matrix whose elements are
taken from a Clifford algebra that describes the preons.

In moving from the SMA for the preons to the SMA
for the deeply bound composite states, we will end up
representing the bound states with 3 × 3 matrices, with
the matrices taking their elements from products of the
primitive idempotents that represent the preons. In do-
ing this, we will find that there are always three differ-
ent solutions to the problem, and we will associate these
three solutions to the three generations of fermions. From
examining the content of the matrices, we will show that
the subparticles are freely converting between one an-
other. This suggests that there should be a matrix that
corresponds to the phases and probabilities of the the
various colors converting into one another. The three
generations would then correspond to the three solutions
to the eigenvector problem.

Let us begin with the usual (spinor) quantum theory
of three (preon) particles. We will write the kets for the
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three preons as |R〉, |G〉, and |B〉. Since we are assuming
that the particles are deeply bound, we will assume that
the wave functions are all delta functions with peaks at
the same point in space, say x0. Thus there is no po-
sition dependendence to distinguish the states. Instead,
the preon states can only be distinguished by their color.
This reduces the problem to a finite number of dimen-
sions, perfect for analysis by the Schwinger measurement
algebra.

Even though the combined wave function is trivial in
that it is zero except at x0, the three wave functions must
still be distinguishable by their color. In the spinor form,
each of the three preon states can be multiplied by an
arbitrary complex constant, so we will do this explicitly
(and thereby allow |R〉, |G〉, and |B〉 to be fixed constants
for some gauge choice):

|αR, αG, αB〉 =

 αR|R〉
αG|G〉
αB |B〉

 . (196)

The corresponding bra form is

〈αR, αG, αB | =
(
α∗R|R〉 α∗G|G〉 α∗B |B〉

)
. (197)

The density matrix form for the state is therefore:

ρ =

 |αR|2|R〉〈R| α∗GαR|R〉〈G| α∗BαR|R〉〈B|
α∗RαG|G〉〈R| |αG|2|G〉〈G| α∗BαG|G〉〈B|
α∗RαB |B〉〈R| α∗GαB |B〉〈G| |αB |2|B〉〈B|

 .

(198)
We now add the requirement that R, G, and B be treated
identically. We need not require that αR, αG and αB be
identical, since the spinor form is subject to the usual
gauge symmetries, but we instead require that rotating
them:

αR → αG

αG → αB

αB → αR

(199)

leaves the overall density matrix unchanged. This implies
that:

α∗RαG = α∗GαB = α∗BαR = βse
+iεs , (200)

where βs ≥ 0 and εs are real constants and the s sub-
script refers to the fact that these terms come from the
spinor. Thus |αR|2 = |αG|2 = |αB |2 = β2

s , and the den-
sity matrix must be of the form:

ρ = βs

 |R〉〈R| e−iεs |R〉〈G| e+iεs |R〉〈B|
e+iεs |G〉〈R| |G〉〈G| e−iεs |G〉〈B|
e−iεs |B〉〈R| e+iεs |B〉〈G| |B〉〈B|

 .

(201)
While the above, overall, is a density matrix (if βs =
1/3), its components are written in bra ket notation. We
can immediately replace the pure products with:

|R〉〈R| = ιR,
|G〉〈G| = ιG,
|B〉〈B| = ιB ,

(202)

where ιχ are primitive idempotents of the underlying
Clifford algebra. The cross products are more difficult
as they correspond to Schwinger’s general measurement
symbols that we analyzed in Section (V). Such symbols
imply the specification of a particular orientation gauge.

We cannot simply replace the cross symbols such as
|R〉〈G| with ιRιG because we cannot be certain of choos-
ing a consistent orientation gauge. Specifying the com-
plex number 〈R|G〉 allows us to write:

ιR ιG = |R〉〈R||G〉〈G| = 〈R|G〉 |R〉〈G|, (203)

and replace |R〉〈G| with ιR ιG/〈R|G〉. As before, we
assume that our system is symmetric under rotations of
R→ G→ B → R. Therefore we assume

〈R|G〉 = 〈G|B〉 = 〈B|R〉 = βce
+iεc , (204)

where βc and εc are real constants and the c refers to the
fact that these come from the underlying Clifford algebra.

We can now write the density matrix as a matrix with
its components taken as complex multiples of the primi-
tive idempotents associated with the preons:

ρ =
βs

βc

 βc ιR e−i(εs+εc)ιRιG e+i(εs+εc)ιRιB
e+i(εs+εc)ιGιR βc ιG e−i(εs+εc)ιGιB
e−i(εs+εc)ιBιR e+i(εs+εc)ιBιG βc ιB

 .

(205)
In order to apply the restriction that ρ is idempotent,

we will need to evaluate products of the ιχ. To do this,
we must use our assumption that 〈R|G〉 = βc exp(+iεc)
as follows:

ιR ιG ιR = |R〉〈R|G〉〈G|R〉〈R|,
= 〈R|G〉 〈G|〉R |R〉〈R|,
= β2

c ιR,
(206)

similarly for ιR ιB ιR, and

ιG ιB ιR = |G〉〈G|B〉〈B|R〉〈R|,
= 〈G|B〉 〈B|R〉 |G〉〈R|,
= 〈G|B〉 〈B|R〉

〈G|R〉 |G〉〈G|R〉〈R|,
= βc exp(+3iεc) ιG ιR.

(207)

With the above, we can compute ρρ by matrix multipli-
cation and compare the product with ρ. The result is
nine equations that all into two types. The three diago-
nal elements all generate equations resolve similar to:

βsιR = β2
s ιRιR + β2

s

β2
c
(ιRιGιGιR + ιRιBιBιR),

= β2
s ιR + β2

s

β2
c
(ιRιGιR + ιRιBιR),

= (β2
s + β2

s + β2
s )ιR, so,

βs = 1/3.

(208)

The six off diagonal equations resolve similarly. For ex-
ample:

βs

βc
e+i(εs+εc)ιGιR = 2β2

s

βc
e+i(εs+εc)ιGιR

+β2
s

β2
c
e−2i(εs+εc)ιGιBιR,

(209)
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after applying Eq. (207), and substituting βs = 1/3, this
reduces to:

1
3βc

e+i(εs+εc) = 2
9βc

e+i(εs+εc) + 1
9βc

e−2i(εs)e+iεc , or,
3 = 2 + e−3iεs and so,
1 = e+3iεs .

(210)
We see that βc and εc are not restricted, and that there
are three possible values for εs:

εs =
2nπ
3
, with n = 1, 2, 3, (211)

where we have numbered these 1, 2, 3 for convenience in
keeping track of the charged leptons in order of their
masses. Substituting back into the form for |αR, αG, αB〉,
by choosing the gauge where the phase of |R〉 is kept
zero, we have the three kets that correspond to the three
generations as:

|1〉G =

 |R〉
e+2iπ/3|G〉
e−2iπ/3|B〉

 , |3〉G =

 |R〉
|G〉
|B〉

 ,

|2〉G =

 |R〉
e−2iπ/3|G〉
e+2iπ/3|B〉

 .

(212)

or more generally,

|n〉G =

 |R〉
e+2inπ/3|G〉
e−2inπ/3|B〉

 , (213)

where we have given the G subscript to note that these
are the geometric spinors and are not vectors over the
complex numbers.

We have thus shown that the SMA, when applied to
the preon model described in Section (XV), automati-
cally produces three generations of particles. Further-
more, these three generations are described here in a sin-
gle object, a 3× 3 matrix of primitive idempotents (and
their products). This opens the door to producing oper-
ators that are unified in that they naturally operate on
particles of different generations.

From the idempotency calculation, it is clear that if
Q is such an operator, and it is to have the generation
kets, Eq. (212), as eigenvectors, then the operator must
be able to be written in the following form:

Q =

 QRR ιR QRG ιRιG QRB ιRιB
QGR ιGιR QGG ιG QGB ιGιB
QBR ιBιR QBG ιBιG QBB ιB

 ,

(214)
where the Qχχ are complex numbers. This method of
writing an operator makes certain that the operator does
not change the type of primitive idempotent in the spinor
when it operates on the spinor (or the density matrix).
We can further simplify the notation for this operator
by getting rid of all the ιχ notation, and instead absorb
them into the Qχχ elements. More specifically, we can

apply Eq. (206) and Eq. (207) to bring the operator and
eigenvector into the form of a 3× 3 complex matrix and
three complex vectors given by:

|n〉 =

 1
e+2inπ/3

e−2inπ/3

 . (215)

If we are to have a theory that is symmetric under
color rotations R → G → B → R, we must apply this
restriction to the form of Q. This severely reduces the
freedom in defining Q:

QRR = QGG = QBB ,
QRG = QGB = QBR,
QRB = QGR = QBG.

(216)

Thus the operator Q is restricted to have only three com-
plex degrees of freedom or six real degrees of freedom.
But we’re not done. In addition, we require that Q have
real eigenvalues. Since the sum of the diagonal elements
of Q is the sum of its eigenvalues, we therefore have that
QRR is real. Applying the |3〉 spinor, we next obtain that
QRG = Q∗

GR. Thus there are only three real degrees of
freedom left in defining Q, and we write the general cross
generation operator as:

Q(µ, η, δ) = µ

 1 ηe+iδ ηe−iδ

ηe−iδ 1 ηe+iδ

ηe+iδ ηe−iδ 1

 . (217)

Where µ, η ≥ 0, and δ are real parameters. The eigen-
values of |n〉 with respect to Q are given by:

Q(µ, η, δ) |n〉 = µ(1 + 2η cos(δ + 2nπ/3)), (218)

and are real.
Since the trace of Q = 3µ, the three eigenvalues sum

to 3µ:

q1 + q2 + q3 =
∑

qn = 3µ. (219)

On the other hand, the square of Eq. (217) has diagonal
elements given by µ2(1 + η2), and we have that:∑

q2n = 3µ2(1 + 2η2), (220)

and dividing by Eq. (219) squared allows the elimination
of µ as well: ∑

q2n
(
∑
qn)2

=
1 + 2η2

3
. (221)

At this point we haven’t derived any relations on the
leptons in that the number of degrees of freedom in Q
(i.e. 3) is the same as the number of degrees of freedom
in the eigenvalues. However, if nature is kind10, η will
prove to be something simple.

10 she is
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XVII. THE CHARGED FERMION MASSES

We now review the remarkable Koide mass formula.
Let me, mµ, and mτ be the measured masses of the elec-
tron, muon and tau. In the standard model, these masses
are arbitrary parameters, but in 1982, Koide [14] noticed
that these masses approximately satisfy the relation:

me +mµ +mτ

(
√
me +√

mµ +
√
mτ )2

=
2
3
. (222)

Comparing with Eq. (221), we see that is a case where
qn =

√
mn gives us η =

√
0.5. We will call this operator√

M and its eigenvalues
√
mn:

√
M |n〉 = Q(µ,

√
0.5, δ) |n〉 =

√
mn |n〉. (223)

The value of δ, which we will determine later, comes sus-
piciously close to the Cabbibo angle. The value of µ is
simply the average of the square roots of the masses of
the charged leptons. Note that the Koide relation is pre-
served when the square roots of the masses are negated,
so we cannot here distinguish between µ and −µ.

If the Koide mass relation is good, Koide has removed
one degree of freedom from the standard model. We will
later associate δ with the mixing angles and remove many
more degrees of freedom in generalizing the Koide rela-
tionship to quarks and neutrinos.

If the relationship Eq. (222) were the result of random
chance, one might suppose that improvements in the ac-
curacy of the measurements of the masses would show a
drift away from a ratio of exactly 2/3, however, time has
been very kind to Koide’s formula.[15] The latest Particle
Data Group figures [16] give (MeV):

me = 0.510998918 ±0.000000044
mµ = 105.658369200 ±0.000009400
mτ = 1776.990000000 ±0.290000000

(224)

Plugging the best estimates for the masses (i.e. me =
0.510998918, etc.), into Eq. (222), multiplying both sides
by (

∑√
mn)2 and comparing the two sides one obtains

RHS = 2
3 (
√

0.510998918 + ...)2 = 1883.156,
LHS = (0.510998918 + ...) = 1883.159, (225)

The error, about 0.003MeV, is considerably less than the
error in the mass of the tau, but the mass of the tau
dominates both sides. Given a small change δ, in the
mass of the tau, the RHS increases by δ, while the LHS
increases by approximately

d
dmτ

2
3 (
√
me +√

mµ +
√
mτ )2δ

= 2
3 (
√
me +√

mµ +
√
mτ )δ/

√
mτ ,

= 0.84δ.
(226)

Thus increasing the mass of the tau by, for example, the
experimental error in its value 0.290MeV, should increase
the LHS of the Koide formula by 0.84 × 0.290 = 0.244,

about 0.046 less than the increase to the RHS. This would
result in an error more than ten times greater than the
observed error in Eq. (225). One supposes that the ex-
perimentalists have been careful with their error bars.

Fermions that are identical except for generation have
masses that renormalize proportionately.[17] Thus the ra-
tios of the observed masses of the neutrinos are propor-
tional to the bare neutrino masses. This does not apply
to two fermions of different types such as a neutrino and
quark. Consequently, we can extract little use in the val-
ues of the µ parameter of Q(µ, η, δ), and we will generally
ignore it from here on.

We’ve been using |n〉 to indicate the ket for the nth
generation charged lepton. We need to generalize our
notation for convenient analysis of the quarks and neu-
trinos. Accordingly, let us follow the notation of the
neutrinos, and describe these particles with a digit for
the generation, and a letter to indicate the particle type.
Thus the electron, muon, and tau are indicated as |e1〉,
|e2〉, and |e3〉; the up quark, charm quark, and top quark
are |u1〉, |u2〉, and |u3〉; the down quark, strange quark
and bottom quark are |d1〉, |d2〉, and |d3〉; and the three
neutrinos (as mass eigenstates) are |ν1〉, |ν2〉, and |ν3〉.
With this notation, our fermion zoo becomes:

|e1〉 |e2〉 |e3〉 electron, muon, tau,
|u1〉 |u2〉 |u3〉 up, charm, top,
|d1〉 |d2〉 |d3〉 down, strange, bottom,
|ν1〉 |ν2〉 |ν3〉 ν1, ν2, ν3,

(227)

If we wish to refer to the nth particle in a generation, we
will use, for example, |en〉.

XVIII. FAMILY MIXING ANGLES

This section discusses the fermion mixing angles in the
context of the preon model discussed above.

In this paper we’ve been using the density matrix for-
malism for pure states only. Since we are considering
deeply bound states, it is natural for us to treat our quark
states in the density matrix formalism as impure states.
Thus we could assume that the density matrix for an up
quark will be of the form:

ρu1 =
2
3
ρē1 +

1
3
ρν1 (bad). (228)

However, in the above, the density matrices for the two
leptons are for distinct particles. That is, they corre-
spond to primitive idempotents that multiply to zero.
So when ρup is squared, one will not obtain ρup, but will
instead get

(ρu1)2 =
4
9
ρē1 +

1
9
ρν1 (bad) (229)

Instead of the fractions 2/3 and 1/3, if we wish to have
the idempotency relation we would have to use coeffi-
cients of 1. This would correspond to a physical situation
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of two free particles, one a neutrino, the other a charged
lepton.

A solution is to treat the ē and ν preons as identi-
cal particles, from the point of view of the density ma-
trix that represents their combined wave function (and
therefore the binding force between them). Thus we can
reuse the work of Section (XVI), as far as the wave states
for the preons. We then need two square root mass op-
erators, one for the charged leptons, the other for the
neutrinos:
√
Me |en〉 =

√
men |en〉, charged leptons,√

Mν |νn〉 =
√
mνn |νn〉, neutrinos.

(230)

XIX. QUARK AND NEUTRINO MASSES

This section discusses the neutrino masses as predicted
by the quark and lepton square root mass operators.

We speculate that the (bare) square root masses of the
quarks is

√
mun = (2

√
men +

√
mνn)/3,√

mdn = (
√
men + 2

√
mνn)/3. (231)

In the above, it should be noted that we cannot be sure
which square roots are positive and which are negative.

XX. CONCLUSIONS
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APPENDIX A: PAULI ALGEBRA
PROBABILITY CALCULATION

Suppose two spin−1/2 states, α and β are represented
by two normalized spinors:

|α〉 =
1√

1 + |α|2

(
1
α

)
, |β〉 =

1√
1 + |β|2

(
1
β

)
.

(A1)

11 “Upon Julia’s Clothes”, by Robert Herrick, 1591-1674

Then the probability of a transition between these spinors
is given by the usual spinor formula, which can be ma-
nipulated into density matrix form:

Pαβ = 〈β|α〉〈α|β〉,
= tr(|β〉〈β||α〉〈α|),
= tr(ρβρα),

= 1
1+|β|2

1
1+|α|2 tr(

(
1 + α∗β β∗ + α∗|β|2
α+ β|α|2 β∗α+ |β|2

)
,

= 1+α∗β+β∗α+|αβ|2
(1+|α|2)(1+|β|2) .

(A2)
We now search for a method of obtaining this same result
in geometric form, without using the trace function. We
will work on the form of the density matrix equation for
probability, that is, tr(ρβρα).

It is possible to write the complex 2 × 2 matrices as
a real vector space over products of Pauli spin matrices.
There are eight real degrees of freedom in complex 2× 2
matrices, so there are eight basis elements for the vector
space:

1̂ σx σy σz

σxσyσz σyσz σxσz σxσy,
(A3)

where 1̂ is the unit matrix. Any complex 2 × 2 matrix
can be written as a sum of real multiples of these basis
elements. For example:(

7− 6i 10 + 3i
−6− 3i −1− 4i

)
,

=
(

3 + 4− i− 5i 2 + 3i+ 8− 0i
2− 3i− 8 + 0i 3− 4 + i− 5i

)
= 31̂+2σx−3σy+4σz+σxσy+8σxσz+0σyσz−5σxσyσz.

(A4)
This defines the 2× 2 complex matrices in entirely real,
and geometric, terms. That is, 1̂ is a Clifford algebra
scalar, σx, σy and σz are Clifford algebra vectors, the
products are bivectors (or pseudo vectors), and σxσyσz ≡
i is the pseudoscalar.

Given a real vector space, a natural squared magni-
tude can be defined on the vector space by summing the
squares of the real numbers that define an element ac-
cording to the given basis. For this we will write | |2G,
where the G subscript stands for geometric. In the above
example:∣∣∣∣( 3 + 4− i− 5i 2 + 3i+ 8− 0i

2− 3i− 8 + 0i 3− 4 + i− 5i

)∣∣∣∣2
G

= 32+22+(−3)2+42+12+82+02+52.

(A5)

It is remarkable that the above squared magnitude, when
applied to the matrix ρβρα, gives a result that is exactly
half of Pαβ = tr(ρβρα). The factor of two comes from
the fact that |1̂|2G = 1, while tr(1̂) = 2. Other than the
factor of two, the calculations are identical.

To show that tr(ρβρα) = 2|ρβρα|2G, one must wade
through a certain amount of algebra. It is easier to do
this if we transform from the purely geometric real vector
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space, to a more convenient complex vector space. To do
this, we make the substitution σxσyσz = i and use as our
complex basis:

1̂ σx σy σz. (A6)

It is easy to see that the complex basis gives the same
| |2G as the real basis.

First, let us abbreviate the multiplication constant as
κ = 1/(1 + |α|2)(1 + |β|2) to give:

ρβρα = κ

(
1 + α∗β β∗ + α∗|β|2
α+ β|α|2 β∗α+ |β|2

)
. (A7)

We write ρβρα in the complex basis as follows:

ρβρα = c1

(
1 0
0 1

)
+cx

(
0 1
1 0

)
+cy

(
0 −i
i 0

)
+cz

(
1 0
0 −1

)
,

(A8)
with complex coefficients cχ. Comparing with Eq. (A7),
we solve for cχ to obtain:

c1 = κ(1 + α∗β + β∗α+ |αβ|2)/2,
cx = κ(α+ β|α|2 + β∗ + α∗|β|2)/2,
cy = κ(α+ β|α|2 − β∗ − α∗|β|2)/2i,
cz = κ(1 + α∗β − β∗α− |αβ|2)/2.

(A9)

Multiplying by the complex conjugates gives:

|c1|2 = κ2(1 + (β∗α)2 + (α∗β)2 + |αβ|4 + +2α∗β
+ 2β∗α+ β∗α|αβ|2 + α∗β|αβ|2 + 4|αβ|2)/4,

|cx|2 = κ2(|α|2 + |β|2 + |α|2|β|4 + |β|2|α|4 + α2|β|2
+ β2|α|2 + αβ + α∗β∗ + β ∗ α|α|2 + β∗α|β|2
+ α∗β|α|2 + α∗β|β|2 + αβ|αβ|2 + α∗β∗|αβ|2
+ (β∗)2|α|2 + (α∗)2|β|2)/4,

|cy|2 = κ2(|α|2 + |β|2 + |α|2|β|4 + |β|2|α|4 − α2|β|2
− β2|α|2 − αβ − α∗β∗ + β ∗ α|α|2 + β∗α|β|2
+ α∗β|α|2 + α∗β|β|2 − αβ|αβ|2 − α∗β∗|αβ|2
− (β∗)2|α|2 − (α∗)2|β|2)/4,

|cz|2 = κ2(1 + (β∗α)2 + (α∗β)2 + |αβ|4 − (α∗β)2
− (β∗α)2)/4.

(A10)
The above four terms simplify when they are summed:

|ραρβ |2G = |c1|2 + |cx|2 + |cy|2 + |cz|2,
= κ2(1 + |α|2 + |β|2 + |αβ|2+
+ α∗β + α∗β|α|2 + α∗β|β|2 + α∗β|αβ|2
+ β∗α+ β∗α|α|2 + β∗α|β|2 + β∗α|αβ|2
+ |αβ|2 + |α|2|αβ|2 + |β|2|αβ|2 + |αβ|4)/2,
= κ2(1 + |alpha|2)(1 + |β|2)

(1 + α∗β + β∗α+ |αβ|2)/2,
= 1+α∗β+β∗α+|αβ|2

2(1+|α|2)(1+|β|2) .

(A11)
Comparing with Eq. (A2), we see that

Pαβ = tr(ρβρα) = 2|ρβρα|2G. (A12)

as desired. Pure density matrices defined by spinors cho-
sen from any of the usual 4×4 complex matrix represen-
tations of the Dirac algebra have a similar property, but
with a factor of 4 rather than 2.

APPENDIX B: ASTROPHYSICAL EVIDENCE

There are a number of odd observations in astrophysics
that can be interpreted as evidence for superluminal sub-
particles. In this section we assemble this evidence, such
as it is. Of course “a black-hole a priori can be the source
of tachyonic matter,”[18] and since black holes are known
to be the source of very energetic jets of particles, it
is natural to suppose that the engines of these jets are
tachyons.

First, the cosmic ray observations. Cosmic rays create
particle showers. If the primary particle is travelling at
close to the speed of light, as is the assumed case for very
high energy particles, the shower particles will travel at
close to the same speed and the assembly will arrive on
the ground as close to a single pulse.

On the other hand, if the primary particle travels at
faster than light, and if it survives for more than just one
collision, then it is possible that the resulting shower,
instead of consisting of a single pulse, will instead arrive
as a series of pulses. This could be detected in two ways,
providing the primary particle lasts long enough.

First, the resulting particle shower will be extended
in time. Most of the cosmic ray experiments are not
sensitive to the exact (i.e. to 10 or 100ns accuracy) arrival
time of the shower particles. This is due to the fact that
showers naturally broaden in time, and historically, there
has been little theoretical reason to expect anomalously
extended particle showers. The design of a few cosmic ray
experiments, in particular AGASA, take into account the
assumption that the showers are of short duration. This
is a design weakness that leaves these sorts of cosmic
ray detectors subject to spoofing by extended particle
showers.

In the energy measurements of ultra high energy cos-
mic rays (UHECRs), one experiment, AGASA has pro-
duced results that suggest that their equipment provides
anomalously high energies at the high end of the spec-
trum. The designers of AGASA measure particle energy
by measuring the amount of Cherenkov light emitted by
shower particles that traverse tanks of water. Electroni-
cally, the pulse is allowed to decay exponentially through
an RC circuit, and the amount of energy is measured as
the length of time the circuit stays above a fixed voltage.

This sort of circuit gives a logarithmic estimate of the
energy and naturally gives a large dynamic range for mea-
surements. However, such a circuit is subject to spoofing
if late pulses arrive. That this will result in a too energy
measurement is well known, for example, see Drescher
and Farrar’s article on the effect, [19].

The spoofing at AGASA only applies to tachyonic par-
ticles, and because the theory in this paper implies that
color is not conserved, we would expect that our tachyons
could not travel great distances. Accordingly, one might
suppose that the spoofs at AGASA would be correlated
with relatively short distance sources of tachyons. This
is consistent with the fact that evidence for correlations
between AGN and UHECR are seen only in the AGASA
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data. For example, see [20, 21]
The second effect of tachyonic particles is that they

imply a preferred reference frame. This is a modification
of Einstein’s special relativity. The appropriate theory is
Lorentz’s relativity sometimes called “Lorentzian Ether
Theory” or LET, the theory from which Einstein bor-
rowed the mathematics. To modify Einstein’s relativity
to LET, one simply adds the assumption of a preferred
frame of reference. It is in that preferred reference frame
that the speeds of the tachyons are defined.

In the preferred frame of reference of the LET, a typical
cosmic ray target has some relatively small velocity. As
long as cosmic rays are generated by particles travelling
at close to light speed, this small velocity has little effect
on the tracks left by the cosmic ray. In the case of a
tachyonic primary particle, however, the track left by
the primary particle and the track left by the secondary
showers diverge. If the target is moving perpendicular
to the path of the secondary, the result will be that the
primary particle will leave a track at a slight angle with
respect to the secondaries.

The secondary tracks will be parallel to each other,
but the primary particle will form an angle with respect

to these tracks. This will leave anomalous effects in the
taret. First, the secondary tracks will be aligned in the
direction in which the target is moving with respect to
the preferred frame of reference. Second, if the primary
particle leaves a track through the target, the small an-
gle between it and the secondary tracks will be inter-
preted by physicists as a very high transverse momenta.
There are only a few experiments that would be sensi-
tive to this sort of anomaly. They consist of layers of
x-ray emulsion placed between plates of lead, and these
experiments do detect such unusual alignments and high
transverse momenta.[22].

One of the odd features of modern cosmology is the as-
sumption of an inflationary period between the big bang
and the emergence of modern galaxies. The inflation is
required in order to allow distant parts of the universe
to come into thermal equilibrium. A tachyonic particle
that condenses into standard matter provides exactly the
mechanism needed to provide this inflation, as has been
speculated widely among cosmologists.

Speculation that not all particles have c as a maximum
speed is provided by Glashow et al, as a mechanism for
neutrino mixing in [23].
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