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THE ALGEBRA OF MICROSCOPIC MEASUREMENT

BY JULIAN SCHWINGER

HARVARD UNIVERSITY

Communicated August 28, 1959

This note initiates a brief account of the fundamental mathematical structure of
quantum mechanics, not as an independent mathematical discipline with physical
applications, but evolved naturally as the symbolic expression of the physical laws
that govern the microscopic realm.'
The classical theory of measurement is implicitly based upon the concept of an

interaction between the system of interest and the measurement apparatus that can
be made arbitrarily small, or at least precisely compensated, so that one can speak
meaningfully of an idealized measurement that disturbs no property of the system.
The classical representation of physical quantities by numbers is the identification
of all properties with the results of such nondisturbing measurements. It is char-
acteristic of atomic phenomena, however, that the interaction between system and
instrument cannot be indefinitely weakened. Nor can the disturbance produced by
the interaction be compensated since it is only statistically predictable. Accord-
ingly, a measurement of one property can produce uncontrollable changes in the
value previously assigned to another property, and it is without meaning to ascribe
numerical values to all the attributes of a microscopic system. The mathematical
language that is appropriate to the atomic domain is found in the symbolic trans-
cription of the laws of microscopic measurement.
The basic concepts are developed most simply in the context of idealized physical

systems which are such that any physical quantity A assumes only a finite number
of distinct values, a', ... a". In the most elementary type of measurement, an
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ensemble of independent similar systems is sorted by the -apparatus into subensem-
bles, distinguished by definite values of the physical quantity being measured. Let
M(a') symbolize the selective measurement that accepts systems possessing the
value a' of property A and rejects all others. We define the addition of such sym-
bols to signify less specific selective measurements that produce a subensemble as-
sociated with any of the values in the summation, none of these being distinguished
by the measurement. The multiplication of the measurement symbols represents
the successive performance of measurements (read from right to left). It follows
from the physical meaning of these operations that addition is commutative and
associative, while multiplication is associative. With 1 and 0 symbolizing the
measurements that, respectively, accept and reject all systems, the properties of
the elementary selective measurements are expressed by

M(a')M(a') = M(a') (1)

M(a')M(a") = 0, a' $ a" (2)

ZM(a') = 1.- (3)
a'

Indeed, the measurement symbolized by M(a') accepts every system produced by
M(a') and rejects every system produced by M(a"), a" $ a', while a selective
measurement that does not distinguish any of the possible values of a' is the
measurement that accepts all systems.

According to the significance of the measurements denoted as 1 and 0, these
symbols have the algebraic properties

11= 1, 00 = 0
10 = 01 = 0

1 + 0 = 1,

and

1M(a') = M(a')1 = M(a'), OM(a') = M(a')0 = 0
M(a') + 0 = M(a'),

which justifies the notation. The various properties of 0, M(a'), and 1 are con-
sistent, provided multiplication is distributive. Thus,

EM(a')M(a") = M(a') = M(a')l = M(a')ZM(a").
a# as

The introduction of the numbers 1 and 0 as multipliers, with evident definitions,
permits the multiplication laws of measurement symbols to be combined in the
single statement

M(a')M(a") = b(a',a")M(a'),
where

b(a'a") =0, a' - a".

Two physical quantities Al and A2 are said to be compatible when the measure-
ment of one does not destroy the knowledge gained by prior measurement of the
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other. The selective measurements M(al') and M(a2%), performed in either order,
produce an ensemble of systems for which one can simultaneously assign the values
a,' to A.1 and a2' to A2. The symbol of this compound measurement is

M(a1'a2') = M(a,')M(a2') = M(a2')M(a1').
By a complete set of compatible physical quantities, Al, . . . Ak, we mean that
every pair of these quantities is compatible and that no other quantities exist,
apart from functions of the set A, that are compatible with every member of this
set. The measurement symbol

k

M(a') = H M(a,')
i=1

then describes a complete measurement, which is such that the systems chosen
possess definite values for the maximum number of attributes; any attempt to de-
termine the value of still another independent physical quantity will produce un-
controllable changes in one or more of the previously assigned values. Thus the
optimum state of knowledge concerning a given system is realized by subjecting it
to a complete selective measurement. The systems admitted by the complete
measurement M(a') are said to be in the state a'. The symbolic properties of com-
plete measurements are also given by equations (1), (2), and (3).
A more general type of measurement incorporates a disturbance that produces a

change of state. (It is here that we go beyond previous developments along these
lines.) The symbol M(a',a") indicates a selective measurement in which systems
are accepted only in the state a" and emerge in the state a'. The measurement
process M(a') is the special case for which no change of state occurs,

M(a') = M(a',a').

The properties of successive measurements of the type M(a',a") are symbolized by

M(a',a')IM(a" ',aiV) = b(a",a"')M(a',aiV), (4)

for, if a" $ a"', the second stage of the compound apparatus accepts none of the
systems that emerge from the first stage, while if a' = a"', all such systems enter
the second stage and the compound measurement serves to select systems in the
state alv and produce them in the state a'. Note that if the two stages are re-
versed, we have

M(a' '',aiV)M(a',a'') = b(a',aiV)M(a"',a'),
which differs in general from equation (4). Hence the multiplication of measure-
ment symbols is noncommutative.
The physical quantities contained in one complete set A do not comprise the

totality of physical attributes of the system. One can form other complete sets,
B, C, . . ., which are mutually incompatible, and for each choice of noninterfering
physical characteristics there is a set of selective measurements referring to sys-
tems in the appropriate states, M(b',b"),M(c',c') .... The most general selective
measurement involves two incompatible sets of properties. We symbolize by
M(a',b') the measurement process that rejects all impinging systems except those
in the state V', and permits only systems in the state a' to emerge from the appara-



VOL. 45, 1959 PHYSICS: J. SCHWINGER 1545

tus. The compound measurement M(a',b')M(c',d') serves to select systems in the
state d' and produce them in the state a', which is a selective measurement of the
type M(a',d'). But, in addition, the first stage supplies systems in the state c'
while the second stage accepts only systems in the state b'. The examples of com-
pound measurements that we have already considered involve the passage of all
systems or no systems between the two stages, as represented by the multiplicative
numbers 1 or 0. More generally, measurements of properties B, performed on a
system in a state c' that refers to properties incompatible with B, will yield a
statistical distribution of the possible values. Hence, only a determinate fraction
of the systems emerging from the first stage will be accepted by the second stage.
We express this by the general multiplication law

AM(a',b')M(c',d') = (b'jc')M(a',d'), (5)

where (b' c') is a number characterizing the statistical relation between the states
b' and c'. In particular,

(a'Ia") =(a',a").
Special examples of (5) are

M(a')M(b',c') = (a'I b')M(a',c')

and

M(a',b')M(c') = (b' c')M(a',c').

We infer from the fundamental measurement symbol property (3) that

Z(a' b')M(a',c') = EM(a')M(b',c')
a at

- M(b',c')
and similarly

Z(b'Ic')M(a',c') = M(a',V),
CI

which shows that measurement symbols of one type can be expressed as a linear
combination of the measurement symbols of another type. The general relation is

M(c',d') = ZM(a')M(c',d')M(b')
a'b'

(6)
= Z(a'| c')(d'I b')M(a',b').

a'b'

From its role in effecting such connections, the totality of numbers (a'i b' is called
the transformation function relating the a- and b-descriptions, where the phrase
"a-description" signifies the description of a system in terms of the states produced
by selective measurements of the complete set of compatible physical quantities A.
A fundamental composition property of transformation functions is obtained on

comparing

ZM(a')M(b')M(c') = Z(a' b')(b' c')M(a',c')
b' bf
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with

M(a')(ZM(b'))M(c') = M(a')M(c')
b'

= (a'l c')M(a',c%
namely

Z(a'jb')(b'|c') = (a'Ic').
b'

On identifying the a- and c-descriptions this becomes

i(a'I b')(b'i a') = 6(a',a")
b'

and similarly
E(b'ta')(a'l b") = 6(blb").
at

As a consequence, we observe that

EZ(a'Ib')(b'la') = E
a' b' a'

=ZE(b'Ia')(a'|b') = i,
b' a' b'

which means that N, the total number of states obtained in a complete measure-
ment, is independent of the particular choice of compatible physical quantities that
are measured. Hence the total number of measurement symbols of any specified
type is N2. Arbitrary numerical multiples of measurement symbols in additive
combination thus form the elements of a linear algebra of dimensionality N2-the
algebra of measurement. The elements of the measurement algebra are called
operators.
The number (a' b') can be regarded as a linear numerical function of the operator

M(b',a'). We call this linear correspondence between operators and numbers the
trace,

(a'j b') = trM(b',a'), (7)

and observe from the general linear relation (6) that

trM (c',d') = E(a' c')(d' b')trM(a',b')
a'b'

= E (d'Ib')(b'la')(atIc')
a'b'

= (d'Ic'),
which verifies the consistency of the definition (7). In particular,

trM(a',a') = 5(a',a")
trM(a') = 1.

The trace of a measurement symbol product is

trM(a',b')M(c',d') = ('I c')trM(a',d')
(8)

= (b'Ic')(d'i a'),
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which can be compared with
trM(c',d')M(a',b') = (d' a')trM(c',b')

- (d'Ia')(b'Ic').
Hence, despite the noncommutativity of multiplication, the trace of a product of
two factors is independent of the multiplication order. This applies to any two
elements X, Y, of the measurement algebra,

trXY= trYX.

A special example of (8) is

trM(a')M(b') = (a'| b')(b'Ia') (9)
It should be observed that the general multiplication law and the definition of the

trace are preserved if we make the substitutions

M(a',b') X(a')-1M(a',b')X(b')
(10)

(a' b') - (a' a' bl)X(bf)-12
where the numbers X(a') and X(b') can be given arbitrary nonzero values. The
elementary measurement symbols M(a') and the transformation function (a'la")
are left unaltered. In view of this arbitrariness, a transformation function (a' |)
cannot, of itself, possess a direct physical interpretation but must enter in some
combination that remains invariant under the substitution (10).
The appropriate basis for the statistical interpretation of the transformation

function can be inferred by a consideration of the sequence of selective measure-
ments M(b')M(a')M(b'), which differs from M(b') in virtue of the disturbance at-
tendant upon the intermediate A-measurement. Only a fraction of the systems
selected in the initial B-measurement is transmitted through the complete appara-
tus. Correspondingly, we have the symbolic equation

M(b')M(a')M(b') = p(a',b')M(b'),
where the number

p(a',b') = (a' I b')(b' I a') (11)
is invariant under the transformation (10). If we perform an A-measurement that
does not distinguish between two (or more) states, there is a related additivity of
the numbers p(a',b'),

M(b')(M(a') + M(a"))M(b') = (p(a',b') + p(a",b'))M(b)',
and, for the A-measurement that does not distinguish among any of the states,
there appears

M(b')(ZM(a'))M(b') = M(b'),
a'

whence
Ep(a',b') = 1.
a'

These properties qualify p(a',b') for the role of the probability that one observes the
state a' in a measurement performed on a system known to be in the state b'.
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But a probability is a real, nonnegative number. Hence we shall impose an ad-
missible restriction on the numbers appearing in the measurement algebra, by re-
quiring that (a' b') and (b' a') form a pair of complex conjugate numbers.2

(b'ja') = (a' b')*, (12)
for then

p(a',b') = (a' b') 12 > 0.
To maintain the complex conjugate relation (12), the numbers X(a') of (10) must
obey

'X(a')* =\a)l
and therefore have the form

X(a') =i(a')
in which the phases (p(a') can assume arbitrary real values.
Another satisfactory aspect of the probability formula (11) is the symmetry

property

p(a',b') = p(b',a').
Let us recall the arbitrary convention that accompanies the interpretation of the
measurement symbols and their products-the order of events is read from right to
left (sinistrally). But any measurement symbol equation is equally valid if inter-
preted in the opposite sense (dextrally), and no physical result should depend upon
which convention is employed. On introducing the dextral interpretation, (a' b')
acquires the meaning possessed by (b' a') with the sinistral convention. We con-
clude that the probability connecting states a' and b' in given sequence must be
constructed symmetrically from (a' b') and (b' a'). The introduction of the op-
posite convention for measurement symbols will be termed the adjoint operation,
and is indicated byt. Thus,

M(a',b')t = M(b',a')

and

M(a',a")t =M(a",a').

In particular,

M(a')t = M(a'),

which characterizes M(a') as a self-adjoint or Hermitian operator. For measure-
ment symbol products we have

(M(a',b')M(c',d'))t = M(d',c')M(b',a')
= M(c',d')tM(a',b')t,

or equivalently,

((b'! c')M(a',d'))t = (c'I b')M(d',a')
= (bIc')*M(a',d')t.



VOL. 45, 1959 PHYSICS: J. SCHWINGER 1549

The significance of addition is uninfluenced by the adjoint procedure, which permits
us to extend these properties to all elements of the measurement algebra:

(X + Y)t = Xt + Yt, (XY)t = YtXt, (XX)t = X*Xt,

in which X is an arbitrary number.
The use of complex numbers in the measurement algebra implies the existence of a

dual algebra in which all numbers are replaced by the complex conjugate numbers.
No physical result can depend upon which algebra is employed. If the operators
of the dual algebra are written X*, the correspondence between the two algebras is
governed by the laws

(X + Y)* = X* + Y*, (XY)* = X*Y*, (XX)* = X*X*.

The formation of the adjoint within the complex conjugate algebra is called trans-
position,

XT = X-t= Xt*.
It has the algebraic properties

(X + Y)T = XT + YT, (XY)T = YTXT, (XX)T = XXT.

The measurement symbols of a given description provide a basis for the repre-
sentation of an arbitrary operator by N2 numbers, and the abstract properties of
operators are realized by the combinatorial laws of these arrays of numbers, which
are those of matrices. Thus

X = >(a'IXI a")M(a',a")
alaf

defines the matrix of X in the a-description or a-representation, and the product

XY = 2(a' X a")M(a',a")2;(aiV Y a'..)M(aiv afif)
= 2(a'IXI at")(a",aiv)(aiv I Y Ia"')M(a',a"')

shows that

(a'IXYIa"') = (a'IXI a")(a" I Y Ia"').
at

The elements of the matrix that represents X can be expressed as

(a'IX I a") = trXM(a",a'),

and in particular

(a'IXI a') = trXM(a').

The sum of the diagonal elements of the matrix is the trace of the operator. The
corresponding basis in the dual algebra is M(a',a")*, and the matrices that rep-
resent X* and XT are the complex conjugate and transpose, respectively, of the
matrix representing X. The operator Xt = XT*, an element of the same algebra
as X, is represented by the transposed, complex conjugate, or adjoint matrix.
The matrix of X is the mixed ab-representation is defined by

X = (a' IXI b')M(a',b')
a'b'
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where
(a'IXI b') = trXM(b',a').

The rule of multiplication for matrices in mixed representations is

(a'IXYIc') = E(a'lXIb')(b'I YIc').

On placing X = Y = 1 we encounter the composition property of transformation
functions, since

(a' l b') = trM(b',a')
= (a'Ib').

If we set X or Y equal to 1, we obtain examples of the connection between the
matrices of a given operator in various representations. The general result can be
derived from the linear relations among measurement symbols. Thus,

(a'I Xi d') = trXM(d',a')

= trXE(c'| d')(a'| b')M(c',b')
b'c'

= Z(a' I)(IX c')(c' d').
b'c

The adjoint of an operator X, displayed in the mixed ab-basis, appears in the ba-
basis with the matrix

(b lXt I a') = (atIXI b')*.

As an application of mixed representations, we present an operator equivalent of
the fundamental properties of transformation functions:

Z(a'Ib')(b Ic') = (a'Ic')
(alIb/)* - (b'Ia'),

which is achieved by a differential characterization of the transformation functions.
If 5(a' b') and 5(b' c') are any conceivable infinitesimal alteration of the correspond-
ing transformation functions, the implied variation of (a'I c') is

6(a'Ic') = E[(a'Ib')(b'I c') + (a'I b')S(b'I c')I, (13)
b1

and also

5(a' b')* = 5(b'Ia').
One can regard the array of numbers 5(a' b') as the matrix of an operator in the ab-
representation. We therefore write

6(a' b') = i(a'I 6 WabIb',
which is the definition of an infinitesimal operator MWab. If infinitesimal operators
SWbC and 6Wac are defined similarly, the differential property (13) becomes the
matrix equation

(a'IbJMaclc') = [(a'l&WIabIb')(b'lc') + (a'Ib')(b'I Wb1V Ic')I,
b1
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from which we infer the operator equation

61tVac = 5lVab + 5WbC. (14)

Thus the multiplicative composition law of transformation functions is expressed by
an additive composition law for the infinitesimal operators 6W.
On identifying the a- and b-descriptions in (14), we learn that

bWaa = 0

or

6(a'laa) = 0,

which expresses the fixed numerical values of the transformation function

(a'I a') = 5(a',a).
Indeed, the latter is not an independent condition on transformation functions but
is implied by the composition property and the requirement that transformation
functions, as matrices, be nonsingular. If we identify the a- and c-descriptions we
are informed that

bWba = -Wab.

Now

5(a' b')* = -i(a' lWablb')*
= -i(b'I6WabtIa'),

which must equal

(b'I a') = i(b'IWbaI a'),
and therefore

bWabt = -bWba = 5Wab.

The complex conjugate property of transformation functions is thus expressed by
the statement that the infinitesimal operators 5W are Hermitian.
The expectation value of property A for systems in the state b' is the average of

the possible values of A, weighted by the probabilities of occurrence that are char-
acteristic of state b'. On using (9) to write the probability formula as

p(a',b') = trM(a')M(b'),

the expectation value becomes

(A)b,= Ea'p(a',b') = trAM(b')
a'

- (b'IAIb'),
where the operator A is

A = Za'M(a').
a'

The correspondence thus obtained between operators and physical quantities is such
that a function f(A) of the property A is assigned the operator f(A), and the opera-
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tors associated with a complete set of compatible physical quantities form a com-
plete set of commuting Hermitian operators. In particular, the function of A that
exhibits the value unity in the state a', and zero otherwise, is characterized by the
operator M(a').
The physical operation symbolized by M(a') involves the functioning of an ap-

paratus capable of separating an ensemble into subensembles that are distinguished
by the various values of a', together with the act of selecting one subensemble and
rejecting the others. The measurement process prior to the stage of selection,
which we call a nonselective measurement, will now be considered for the purpose of
finding its symbolic counterpart. It is useful to recognize a general quantitative
interpretation attached to the measurement symbols. Let a system in the state
c' be subjected to the selective M(b') measurement and then to an A-measurement.
The probability that the system will exhibit the value b' and then a', for the re-
spective properties, is given by

p(a',b',c') = p(a',b')p(b',c') = (a'i b')(b' c') I2
= |I(a' 5M(b') c')l2

If, in contrast, the intermediate B-measurement accepts all systems without dis-
crimination, which is equivalent to performing no B-measurement, the relevant
probability is

p(a',1,c') = (a'jc') 2
= af I:M(b') ICf) 12.
b-

There are examples of the relation between the symbol of any selective measure-
ment and a corresponding probability,

p(a', ,c') = (a' |Mc') 2.

Now let the intervening measurement be nonselective, which is to say that the ap-
paratus functions but no selection of systems is performed. Accordingly,

p(a',b,c') = Ep(a',b')p(b',c')
b'

= EZ(a'ILM(b') c')l2

which differs from

p(a',J,c') = I(a'T M(b') Ic') 2

by the absence of interference terms between different b' states. This indicates
that the symbol to be associated with the nonselective B-measurement is

Mb = Zei'b'M(bt)
b1

where the real phases Ob' are independent, randomly distributed quantities. The
uncontrollable nature of the disturbance produced by a measurement thus finds its
mathematical expression in these random phase factors. Since a nonselective
measurement does not discard systems we must have

Ep(a',b,c') = 1
a'
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which corresponds to the unitary property of the Mb operators,

MbtMb = MbMbt = 1.

It should also be noted that, within this probability context, the symbols of the
elementary selective measurements are derived from the nonselective symbol by re-
placing all but one of the phases by positive infinite imaginary numbers, which is an
absorptive description of the process of rejecting subensembles.
The general probability statement for successive measurements is

p(a',b', . . s',t') = (a' M(b') . . M(s') t') I

which is applicable to any type of observation by inserting the appropriate meas-
urement symbol. Other versions are

p(a', ..t)=(t' (M(a') . . M(s'))t(M(a') . . M(s')) t'
and

p(a', . . t') = tr(M(a') . . M(t'))t(M(a') . . M(t')),
each of which can also be extended to all types of selective measurements, and to
nonselective measurements (the adjoint form is essential here). The expectation
value construction shows that a quantity which equals unity if the properties A,
B. ... S successively exhibit, in the sinistral sense, the values a', b', . .. s', and is
zero otherwise, is represented by the Hermitian3 operator (M(a') . . . M(s'))t-
(M(a') . . M(s')).
Measurement is a dynamical process, and yet the only time concept that has

been used is the primitive relationship of order. A detailed formulation of quan-
tum dynamics must satisfy the consistency requirement that its description of the
interactions that constitute measurement reproduces the symbolic characterizations
that have emerged at this elementary stage. Such considerations make explicit
reference to the fact that all measurement of atomic phenomena ultimately involves
the amplification of microscopic effects to the level of macroscopic observation.

Further analysis of the measurement algebra leads to a geometry associated with
the states of systems.

1 This development has been presented in numerous lecture series since 1951, but is heretofore
unpublished.

2 Here we bypass the question of the utility of the real number field. According to a comment in
THESE PROCEEDINGS, 44, 223 (1958), the appearance of complex numbers, or their real equivalents,
may be an aspect of the fundamental matter-antimatter duality, which can hardly be discussed at
this stage.
3Compare P. A. M. Dirac, Rev. Mod. Phys, 17, 195 (1945), where non-Hermitian operators

and complex "probabilities" are introduced.
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