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Abstract The weak quantum numbers of the elementary fermions arise as
particular representations of the Lie symmetry SU(3)× SU(2)×U(1). Hopf
algebras provide a generalization of Lie algebras with the advantage that
they also naturally model the algebra of Feynman diagrams. The simplest
Hopf algebras are the group algebras generated by finite groups such as the
permutation group of three elements, P3. The simplest Feynman diagrams
are those that define propagators. In this paper we examine the propagators
of the Hopf algebra generated by the permutation group of three elements,
C[P3]. The algebra consists of a 6-dimensional complex vector space, with
basis given by the six elements of P3. Multiplication is defined by the group
multiplication. We show that the propagators of this algebra naturally con-
tain the quarks and leptons with their weak hypercharge, weak isospin, and
baryon quantum numbers. We show that an extension of the algebra gives
spin-1/2 and the generations.

Keywords weak hypercharge · weak isospin · baryon number · Hopf
algebra · generation

PACS 11.30.Hv
There are several motivations for using Hopf algebras to model elementary

particles. They arise naturally in quantum mechanics. [1] Feynman graphs
are organized with an algebra similar to the Hopf algebra on rooted trees. The
partition function of quantum statistics gives rise to a Hopf algebra structure.
And a type of Hopf algebra, quantum groups, are used in quantum physics
to model the nonideal (multi-frequency) behavior of lasers. [2] They are used
in analyzing broken symmetries in string theory. [3] And there are certain
advantages in replacing a Lie symmetry with a Hopf algebra. [4]
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The Feynman graphs that characterize a particle are the propagators.
The propagators generate a trivial Hopf algebra in that it remains linear:
connecting a propagator to a propagator results in a propagator. That is,
propagators satisfy the idempotency law xx = x. Applied to a group algebra,
idempotency defines a set of coupled quadratic equations. The solution set
can be thought of as containing all the possible results from renormalizing
propagators in the algebra.

The process of dressing a bare propagator to physical form amounts to
multiplying that propagator to a high power (while maintaining its magni-
tude). For a typical initial condition, this process leads to an attractor which
must be an idempotent of the Hopf algebra. The process is fast on the com-
puter and it allows us to distinguish between the idempotents of the Hopf
algebra. We use these techniques to show that the quarks and leptons ap-
pear naturally in the Hopf algebra generated by the permutations on three
elements.

In the first section we introduce the concept by analyzing the simplest
nontrivial group/Hopf algebra C[P2], and show that its propagators have
the quantum numbers of the leptons. The second section compares Hopf
algebra propagators with pure density matrices and demonstrates how to
write operators. Section three analyzes the group/Hopf algebra C[P3] and
shows that its quantum numbers define the quarks and leptons. Section four
discusses a Hopf algebra extension of C[P3] which models the generations.
The conclusion discusses how these ideas fit into a general theory of the
elementary particles.

1 Introduction: The Leptons

An easy example of a Hopf algebra is the complex group algebra of a finite
group. Let G = {gj} be a group with n elements. Define the group product
as gjgk ∈ G, and let e be the multiplicative identity so that eg = ge. The
Hopf algebra C[G] is defined as the n-dimensional complex vector space with
the group elements {gj} as the basis. That is, given n complex numbers αj ,
a general element of C[G] is given by:

φα = Σjαjgj . (1)

Addition and scalar multiplication are defined as usual for a complex vector
space. Multiplication of two Hopf algebra elements φα and φβ is defined by
using the group algebra product:

φα φβ = ΣjΣkαjβk(gjgk). (2)

The multiplicative identity of the Hopf algebra is 1e = e. This Hopf algebra
models the controlled-NOT gate of qubit quantum information theory. For a
more complete description see reference [5].

The smallest nontrivial group is the permutation group on 2 elements,
P2 = {e, s}, with e2 = s2 = e and es = se = s. The regular representation of
this group is:

ê =

(
1 0
0 1

)
, ŝ =

(
0 1
1 0

)
. (3)
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The Hopf algebra elements are of the form:

(αe, αs) = αee+ αss, (4)

and the product of the elements (αe, αs) and (βe, βs) is

(αe, αs)(βe, βs) = (αeβe + αsβs, αeβs + αsβe). (5)

If we arrange the elements in 2× 2 matrices by (αe, αs)→ αeê+αsŝ, we can
reproduce the above multiplication:(

αe αs
αs αe

)(
βe βs
βs βe

)
=

(
αeβe + αsβs αeβs + αsβe
αeβs + αsβe αeβe + αsβs

)
. (6)

The technique shown above generalizes; the Hopf algebra of a finite group G
is obtained by treating the regular representation of G as the basis elements
of a vector space, with addition and multiplication defined by matrix addition
and multiplication.

In quantum field theory, we typically wish to compute the probability
of an interaction defined by initial and final conditions. These conditions
become the external lines of the diagrams. For each diagram compatible with
those external lines, we compute a complex number. We add these complex
numbers; then the probability is the squared magnitude of the sum.

Suppose that we have two types of Feynman diagrams, ET and ST , that
correspond to the advance of time by t = T . The ET diagrams cause no
change in the system, while the ST diagrams change some property of the
system so that two consecutive ST diagrams will cancel. We have two complex
numbers, αeT and αsT that we obtain by summing over all of the ET and
ST Feynman diagrams, respectively.

We would like to find the Feynman diagrams for the passage of time by
t = 2T . There are two types of Feynman diagrams for t = 2T ; the E2T

that correspond to no change to the system, and the S2T that change the
property. But probabilities only depend on squared magnitudes of sums of
complex numbers so what we’re really concerned with is only the complex
numbers associated with these two types of Feynman diagrams, αe2T and
αs2T .

In computing αe2T and αs2T , we are to consider all combinations of Feyn-
man diagrams that are consistent with the beginning and ending states. Two
consecutive ET will leave the system unchanged so their product will con-
tribute to E2T . Also contributing will be two consecutive ST . The contri-
butions to S2T will be an ET and an ST in either order. The result for the
complex numbers will be:

αe2T = αeTαeT + αsTαsT ,
αs2T = αeTαsT + αsTαeT .

(7)

This is equivalent to the Hopf algebra multiplication of Eq. (6).
Suppose that T is a very short time and so our experiments are only con-

cerned with the limit of αenT and αsnT as n→∞. Since elementary particles
are states that are stable (over times much shorter than their lifetime), we
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look for situations where αenT and αsnT are stable. In the language of the
Hopf multiplication, we require that

(αenT , αsnT )(αenT , αsnT ) = (αenT , αsnT ). (8)

Multiplying a quantum state by an arbitrary complex phase leaves it un-
changed so we will generalize the above to:

(αenT , αsnT )(αenT , αsnT ) = eiθ(αenT , αsnT ). (9)

These amount to two quadratic equations in two unknowns. The four solu-
tions of Eq. (8) are:

( αenT , αsnT )
eiθ ( 0 , 0 ),
eiθ ( 1/2 , −1/2 ),
eiθ ( 1/2 , +1/2 ),
eiθ ( 1 , 0 ).

(10)

The weak hypercharge and weak isospin quantum numbers of the leptons
are:

t0 t3
ν̄L 0 0
ν̄R +1 −1/2
ēR +1 +1/2
ēL +2 0
νL 0 0
νR −1 +1/2
eR −1 −1/2
eL −2 0

. (11)

These are equivalent to Eq. (10) by choosing:

αenT = t0/2,
αsnT = t3,

θ = π for the leptons,
0 for anti-leptons.

(12)

The above correspondence amounts to treating the elementary particles as
the long time propagators. The correspondence is natural in that it relates
the U(1) symmetry of weak hypercharge t0, with the identity element of the
Hopf algebra e, while the SU(2) symmetry of weak isospin t3, is related to
the swap element s which is the Pauli spin matrix σx.

2 Hopf Algebra Quantum States

Let |a〉 be a quantum state represented by a state vector or spinor. An alter-
native representation is the pure density matrix:

ρa = |a〉〈a|. (13)
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Such a matrix is idempotent:

ρaρa = ρa. (14)

The solutions to our the Hopf algebra long-time propagator equation Eq (8)
are idempotent under the Hopf algebra multiplication. Pure density matrices
are also Hermitian:

ρ†a = ρa, (15)

and have trace 1:

tr(ρa) = 1. (16)

These three requirements fully characterize the pure density matrices. That
is, any matrix M which is idempotent, Hermitian, and has unit trace can be
written as M = |m〉〈m|.

Eliminating the Hermiticity requirement allows pure density matrices
with differences between the bra and ket, i.e. in the form |a〉〈b|/|〈a|b〉|. Such
states might be useful for modeling situations which do not have T sym-
metry. The trace of a Hopf algebra element is the number which multiplies
the e component. The first and fourth solutions Eq. (10) have traces of zero
and two, so we have to include states with trace other than unity. A matrix
whose trace is not unity cannot be put into |a〉〈a| form; an example is the
unit matrix. In the case of Hopf algebras this is not a problem as a state
vector is not required.

We’ve interpreted e as the part of the quantum state that gives the quan-
tum number for t0/2 and s as that for t3. In pure density matrices, the
average value of an operator M for a state ρ is obtained by taking the trace:

〈M〉 = tr (ρM). (17)

For the Hopf algebra, the trace is the e portion. For the value αee+αss, this
is αe:

〈αee+ αss〉 = tr (αee+ αss) = αe. (18)

Then the natural Hopf algebra choices for the weak hypercharge, weak isospin,
and electric charge operators are:

T0 = 2e,
T3 = s,
Q = T0/2 + T3 = e+ s.

(19)

These operators work as desired. The quantum numbers of the particle have
been packed into the propagator.
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3 Quarks

For the permutation group on 3 elements, we will use the elements {R,G,B}
and the group elements {e, j, k, r, g, b} with their action defined as:

R G B
e R G B
j G B R
k B R G
r R B G
g B G R
b G R B

(20)

The permutation group is then

e j k r g b
e e j k r g b
j j k e b r g
k k e j g b r
r r g b e j k
g g b r k e j
b b r g j k e

(21)

The previous section showed that we need consider only the complex num-
bers. Accordingly, we will abuse the notation somewhat, eliminate α, n, and
T from our notation, and use {e, j, k, r, g, b} for the complex numbers. Where
we need “e” for the base of the natural log, we will write it as an exponential.

The requirement that the long time propagators be stable is:

(e, j, k, r, g, b)(e, j, k, r, g, b) = eiθ(e, j, k, r, g, b), (22)

where the multiplication is to be the Hopf multiplication defined by the
permutation group on three elements. In order to keep the quantum numbers
real (which amounts to requiring that the measurable quantities be real), we
will restrict ourselves to the real values of exp(iθ). That is, we will use θ = 0
or π, as in the previous section. As before, this amounts to doubling the
number of solutions by allowing negative quantum numbers.

In solving the equations, we can add the negative solutions back in at the
end. Until then, Eq. (22) gives six quadratic equations in six unknowns:

e = ee+ jk + kj + rr + gg + bb,
j = ej + je+ kk + rg + gb+ br,
k = ek + jj + ke+ rb+ gr + bg,
r = er + jg + kb+ re+ gk + bj,
g = eg + jb+ kr + rj + ge+ bk,
b = eb+ jr + kg + rk + gj + be.

(23)

The above reads directly from the group table Eq. (21). For example, there
are six ways of obtaining e: e = ee, jk, kj, rr, gg, or bb. These become e =
ee+jk+kj+rr+gg+bb which can be abbreviated as e = ee+2jk+r2+g2+b2.
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As a first step in solving these equations, we rewrite them as an equivalent
set of six equations:

e = ee+ 2jk + (r2 + g2 + b2),
(r + g + b)2 = (e+ j + k)(1− (e+ j + k)),

0 = (j − k)(1 + j + k − 2e),
(1− 3f + (e+ j + k))r = (r + g + b)(j + e),
(1− 3f + (e+ j + k))g = (r + g + b)(j + e),
(1− 3f + (e+ j + k))b = (r + g + b)(j + e).

(24)

Choosing e = 1/2 and j = −k solves the last four of these equations. The
two remaining equations reduce to:

1/2 = ±(r + g + b),
j2 = −1/8 + (r2 + g2 + b2)/2.

(25)

Since we have solved four equations with only two assignments, the solution
space will be at least a 2-manifold. We will parameterize the solutions with
complex numbers α, and β. We find four 2-manifolds of solutions:

e j k r g b
1/2 +γ −γ −1/6 + α −1/6 + β −1/6− α− β
1/2 −γ +γ +1/6− α +1/6 + β +1/6 + α+ β
1/2 +γ −γ +1/6 + α +1/6 + β +1/6− α− β
1/2 −γ +γ −1/6− α −1/6 + β −1/6 + α+ β

, (26)

where γ =
√
α2 + β2 + αβ − 1/12.

Eliminating the case “e = 1/2 and j = −k”, there are 12 discrete solu-
tions. Six of these show up as two triplets:

e j k r g b
1/3 w+n/3 w−n/3 0 0 0
2/3 −w+n/3 −w−n/3 0 0 0

(27)

where w = exp(2iπ/3) and n = 0, 1, 2. The remaining six discrete solutions
are:

e j k r g b
0 0 0 0 0 0
1 0 0 0 0 0

1/6 +1/6 +1/6 +1/6 +1/6 +1/6
5/6 −1/6 −1/6 −1/6 −1/6 −1/6
1/6 +1/6 +1/6 −1/6 −1/6 −1/6
5/6 −1/6 −1/6 +1/6 +1/6 +1/6

(28)

All of our solutions appear in pairs that sum to (e, j, k, r, g, b) = (1, 0, 0, 0, 0, 0).
This is a general property of a group algebra and follows from the fact that
u2 = u iff (1− u)2 = (1− u). Another general property is that each solution
satisfies either e+ j + k + r + g + b = 0 or = 1.

As before, we put e = t0/2. For t3, we previously used s, the element that
satisfied s2 = e. For P3, there are three elements that square to e, so we put
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their sum as t3. And with quarks, we have another quantum number, the
baryon number, for which we will use the remaining elements, j + k:

e = t0/2,
r + g + b = t3,

e+ r + g + b = Q,
j + k = B(q).

(29)

The complete solution set for θ = 0, with particle assignments, is:

θ = 0 e j k r g b
ν̄L 0 0 0 0 0 0
dL 1/6 1/6 1/6 −1/6 −1/6 −1/6
uL 1/6 1/6 1/6 +1/6 +1/6 +1/6
d̄L 1/3 w+n/3 w−n/3 0 0 0
ν̄R 1/2 ±γ ∓γ −1/6 + α −1/6 + β −1/6− α− β
ēR 1/2 ±γ ∓γ +1/6 + α +1/6 + β +1/6− α− β
uR 2/3 −w+n/3 −w−n/3 0 0 0
Q̄udL 5/6 −1/6 −1/6 −1/6 −1/6 −1/6
Q̄uuL 5/6 −1/6 −1/6 +1/6 +1/6 +1/6
ēL 1 0 0 0 0 0

(30)

where n,w, α, β, and γ are as used in Eq. (27) and Eq. (26). The Q̄udL and
Q̄uuL solutions have the quantum numbers of vector anti-diquarks (the third
vector anti-diquark, Q̄ddL, has the same quantum numbers as the ūR). Note
that the baryon number assignment B(q) = j + k only works for the n = 1
or 2, a choice we will ratify below.

With θ = π, we obtain a similar table but with all numbers negated and
with the particles and anti-particles swapped (and with L and R swapped):

θ = π e j k r g b
νR 0 0 0 0 0 0
d̄R −1/6 −1/6 −1/6 +1/6 +1/6 +1/6
ūR −1/6 −1/6 −1/6 −1/6 −1/6 −1/6
dR −1/3 −w+n/3 −w−n/3 0 0 0
νL −1/2 ∓γ ±γ +1/6− α +1/6− β +1/6 + α+ β
eL −1/2 ∓γ ±γ −1/6− α −1/6− β −1/6 + α+ β
ūL −2/3 +w+n/3 +w−n/3 0 0 0
QudR −5/6 +1/6 +1/6 +1/6 +1/6 +1/6
QuuR −5/6 +1/6 +1/6 −1/6 −1/6 −1/6
eR −1 0 0 0 0 0

(31)

Thus the solutions to the long term propagator problem for this Hopf algebra
correspond nicely to the weak quantum numbers of quarks and leptons. The
remaining solutions correspond to various diquarks.

The mass (or Higgs) interaction would be particularly simple if we require
that the differences between any pair of left and right handed particles carry
the same charges (i.e. H = eL − eR = dL − dR = νR − νL = uR − uL):

H = (3e± ij
√

3∓ ik
√

3− r − g − b)/6
= (1/2,±i

√
3/6,∓i

√
3/6,−1/6,−1/6,−1/6).

(32)
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The above is the same quantum numbers as the ν̄R. This defines the particle
assignments up to the sign of the imaginary unit:

θ = 0 t0 B(q) t3
2e j + k r + g + b

ν̄L 0 0 0
dL 1/3 1/3 −1/2
uL 1/3 1/3 +1/2
d̄L 2/3 −1/3 0
ν̄R 1 0 −1/2
ēR 1 0 +1/2
uR 4/3 1/3 0
ēL 2 0 0

(33)

The θ = π assignments are similar.
From looking at the uL and dL, theW+ must carry the quantum numbers:

W+ = (r + g + b)/3 = (0, 0, 0, 1/3, 1/3, 1/3). (34)

This is not included in the solutions Eq. (30) and so, in this theory, does
not correspond to a (single) propagator. Indeed, in the standard model the
W+ is a massive particle and so must violate the SUc(3)× SUL(2)× UY (1)
symmetry.

4 Generations

Upon using the permutation group on three elements as a basis for a Hopf
algebra, one naturally considers the Feynman diagrams that would give rise
to that finite group. If the elementary fermions are made from three preons
that can have three different conditions but can swap these positions, then
the Feynman diagrams for their movement would give the permutation group
on three elements. But no preon structure for the fermions has yet been
detected. What has been observed is that the elementary fermions arise in
three generations. In this section we will explore the possibility that the three
generations arise from an extension of the Hopf algebra we’ve used to model
the weak quantum numbers.

The first thing to note is that the preons suggested by our calculations
have no internal structure. They are treated as scalar particles. But the
spin-statistics theorem implies that we should use an odd spin particle for
the preons. The simplest case is spin-1/2, but then we are faced with the
problem of how to find three spin-1/2 states.

Quantum information theory (QIT) provides a possible solution to this
problem. In QIT the concept of “complementary variables” is modeled in
a finite dimensional Hilbert space by “mutually unbiased bases”. [6] Two
bases are mutually unbiased if the transition probabilities between states of
the bases are all equal. For the example of spin-1/2, the probabilities must
all be 1/2, so therefore two spin-1/2 bases {|a1〉, |a2〉} and {|b1〉, |b2〉} are
mutually unbiased if:

|〈aj |bk〉|2 = 1/2, for all j, k. (35)
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A “complete” set of mutually unbiased bases means a maximal set of bases.
For an n-dimensional Hilbert space, the maximum number of MUBs is n+1.
For spin-1/2, that means we can name at most three mutually unbiased bases.
The usual choice is:

{|+ x〉, | − x〉}, {|+ y〉, | − y〉}, {|+ z〉, | − z〉}, (36)

that is, spin in the three perpendicular directions.
The transition probabilities between distinct elements of a single basis are

zero, i.e. |〈+x|−x〉|2 = 0. So there are zero probabilities for particles making
these transitions and we can exclude such pairs from our Hopf algebra basis
states. This leaves just three basis states for spin-1/2:

{|+ x〉, |+ y〉, |+ z〉}. (37)

To get a Hopf algebra we need to allow a multiplication, that is, we need to
upgrade our spinors to operators. We do this by going to the pure density
matrix form. Putting the 3-dimensional vector u = (ux, uy, uz) and using the
Pauli spin matrices to represent spin-1/2, we have:

|u〉 → ρu = |u〉〈u| = (1 + u · σ)/2 =
1

2

(
1 + uz ux − iuy
ux + iuy 1− uz

)
. (38)

The three matrices {ρx, ρy, ρz} do not generate a group because they are not
closed under multiplication.

To close the group, consider all possible products of them. At first glance
this appears to be an infinite set, but an operator is completely determined
by its left and right-side projections. So the following set is “closed” under
multiplication:

(ρjρk), for j, k ∈ {x, y, z}, (39)

if by “closed” we mean that any product is a complex multiple of an element
of the set. Since our purpose for the group is to make a Hopf algebra, we can
allow this generalization of closure. And such a generalization is natural for
Feynman diagrams.

An arbitrary element of the algebra is given by:

Σj,kαjk (ρjρk), (40)

where αjk are nine complex numbers. Multiplication uses the multiplication
of Pauli algebra projection operators ρj . We call this the “Hopf algebra over
the spin-1/2 MUBs”. Note that since the algebra is defined using the pure
density matrices or projection operators ρj , there are no arbitrary complex
phases. However, complex Berry-Pancharatnam phases [7, 8, 9] are intro-
duced.

As before, we solve for the elements of the algebra that satisfy xx = x
and therefore correspond to long time propagators (subject to the additional
constraint that they have unit trace). The calculation is somewhat involved.
[10] We find that the long time propagators appear as three copies of the
usual spin-1/2 which we associate with the three generations. The form of
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the long time propagators suggests a justification for the lepton mass formulas
of Yoshio Koide. [11, 12, 10]

The idempotent elements of our Hopf algebra C[P3] are the only pos-
sible results for the renormalization of propagators of the algebra. If one
begins with a non-zero element of the algebra, and one repeatedly squares
and normalizes it, the element quickly approaches one of the idempotents.
If the initial value was taken with some particular symmetry, it is possible
to obtain any one of the solutions. However, for a typical random element,
one finds that one always obtains one of only four solutions: the dL, the uL,
and the d̄L or its complex conjugate. These are the primitive elements of the
algebra. They annihilate each other (i.e. two distinct primitive idempotents
multiply to give zero). And given any subset of them, the sum over that
subset is an idempotent. Finally, they sum to unity. These are the algebraic
properties that characterize a “complete set of primitive idempotents,” the
concept from pure density matrices that corresponds to a complete set of
commuting observables.

For the Hopf algebra over the spin-1/2 MUBs, three idempotents (corre-
sponding to the three generations) were found in [10]. These three are the
primitive ones and are the only ones with a non zero volume in their domain
of attraction. They form a complet set of primitive idempotents.

5 Conclusion

The elementary particle zoo includes many hundreds of spin-1/2 fermions.
Which are modeled using the following propagator?

SF (x− y) =

∫
d4p

(2π)4
i(γµp

µ + 0.511 eV)

p2 − (0.511 eV )2 + iε
e−ip·(x−y) (41)

Of course the 0.511eV gives the game away. In general, the identity of an
elementary particle is determined by its propagator. But in practice, for
a previously unknown particle, one must specify both its propagator and
its various quantum numbers. In this paper we’ve attempted to use Hopf
algebras to bundle the charges into the same mathematical object as the
propagators.

Traditionally, when we think of quantum states we imagine distinct states
as being orthogonal. For example, the right handed and left handed electron
eL and eR are assumed to be orthogonal. Orthogonality means that the
transition probabilities are zero. Their propagators multiply to give zero.
To get a non-zero probability we are forced to insert an interaction vertex
between the propagators. By encoding the charges into the propagators, we
can hope that there will be no information left for the vertices and the vertices
can be set to unity: dyanmics from kinematics.

We’re using two Hopf algebras. The first is generated by the permutation
group of three elements. The long time propagators of this Hopf algebra have
a structure that reminds one of the quantum numbers of the elementary
quarks and leptons. The use of the permutation group suggests that the
Feynman diagrams should be that of three inter-weaving strands, that is,
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three particles which swap three orientations amongst themselves. Since the
permutation group knows nothing about spin this model is literal only for
three scalar particles.

Our second Hopf algebra explores the behavior of a single strand of the
first Hopf algebra. We use the mutually unbiased bases of the Pauli spin
matrices to model the three orientations. We show that the long time prop-
agators of this Hopf algebra come in three classes which naturally model
the three elementary particle generations. Together, these two Hopf algebras
describe the quarks and leptons, spin-1/2, and the generations they appear
in.

To obtain a complete theory of elementary particles using Hopf algebra
will require modeling the vertices. These seem likely to require Feynman di-
agrams with loops. Our hope is that a deeper understanding of how Hopf al-
gebras model the renormalization of simple vertices will complete the model.
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